Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of the cell cycle contributes to the parcellation of the primate visual cortex

Abstract

AN as-yet unresolved issue in developmental neurobiology is whether the discrete areas that form the mammalian cortex emerge from a uniform cortical plate or whether they are already specified in the germinal zone1,2. A feature of the primate striate cortex is that the number of neurons per unit area is twice that of anywhere else in the cerebral cortex3. Here we take advantage of this unique structural feature to investigate whether the extra striate cortical cells are due to increased neuron production during neurogenesis. We labelled precursors undergoing terminal cell division with 3H-thymidine and allowed them to migrate to the cortical plate. Cell counts revealed that their rate of production in the germinal zone of striate cortex is higher than in that giving rise to extrastriate cortex. Also, we used 3H-thymidine pulse injections to investigate cell cycle dynamics and found that this phase of increased production of striate cortical cells is associated with changes in the parameters of the cell cycle. These results show that cortical area identity is at least partially determined at the level of the ventricular zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. O'Leary, D. D. M. Trends Neurosci. 12, 400–406 (1989).

    Article  CAS  Google Scholar 

  2. Rakic, P. Science 241, 170–176 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Rockel, A. J., Hiorns, R. W. & Powell, T. P. S. Brain 103, 221–244 (1980).

    Article  CAS  Google Scholar 

  4. Bisconte, J. C. & Marty, R. Expl Brain Res. 22, 37–56 (1975).

    Article  CAS  Google Scholar 

  5. Angevine, J. B. & Sidman, R. L. Nature 192, 766–768 (1961).

    Article  ADS  Google Scholar 

  6. Rakic, P. Expl Brain Res. Suppl. 1 439–450 (1976).

  7. Rakic, P. Science 183, 425–427 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Waechter, R. V. & Jaensch, B. Brain Res. 46, 235–250 (1972).

    Article  Google Scholar 

  9. Schultze, B. & Korr, H. Cell Tissue Kinet. 14, 309–325 (1981).

    CAS  PubMed  Google Scholar 

  10. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. J. Neurosci. 13, 820–833 (1993).

    Article  CAS  Google Scholar 

  11. Korr, H. Adv. Anat. Embryol. Cell Biol. 61, 1–70 (1980).

    Article  CAS  Google Scholar 

  12. Laskey, R. A., Fairman, M. P. & Blow, J. J. Science 246, 609–613 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Pardee, A. B. Science 246, 603–608 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Mac Auley, A., Werb, Z. & Mirkes, P. E. Development 117, 873–883 (1993).

    CAS  PubMed  Google Scholar 

  15. Finlay, B. L. & Slattery, M. Science 219, 1349–1351 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Williams, R. W., Ryder, K. & Rakic, P. Soc. Neurosci. Abstr. 13, 1044 (1987).

    Google Scholar 

  17. O'Leary, D. D. M. & Stanfield, B. B. J. Neurosci. 9, 2230–2246 (1989).

    Article  CAS  Google Scholar 

  18. Schlaggar, B. L. & O'Leary D. D. M. Science 252, 1556–1560 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Barbe, M. F. & Levitt, P. J. Neurosci. 11, 519–533 (1991).

    Article  CAS  Google Scholar 

  20. Ferri, R. T. & Levitt, P. Cereb. Cortex 3, 187–198 (1993).

    Article  CAS  Google Scholar 

  21. Arimatsu, Y. et al. Proc. natn. Acad. Sci. U.S.A. 89, 8879–8883 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Cohen-Tannoudji, M. thesis, Paris Univ. (1992).

  23. Johnston, J. G. & Van Der Kooy, D. Proc. natn. Acad. Sci. U.S.A. 86, 1066–1070 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Dehay, C., Horsburgh, G., Berland, M., Killackey, H. & Kennedy, H. Nature 337, 265–267 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Kennedy, H. & Dehay, C. Cereb. Cort. 3, 171–186 (1993).

    Article  CAS  Google Scholar 

  26. Kostovic, I. & Rakic, P. J. Neurosci. 4, 25–42 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehay, C., Giroud, P., Berland, M. et al. Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366, 464–466 (1993). https://doi.org/10.1038/366464a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366464a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing