Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Book Review
  • Published:

Period-doubling reversals and chaos in simple ecological models

Abstract

The period-doubling route to chaos is a well known feature of a range of simple, nonlinear difference equations routinely used in modelling biological populations. It is not generally understood, however, that the process may easily break down and suddenly reverse, giving rise to distinctive period-halving bifurcations. These reversals may act to control, and possibly prevent, the onset of chaos.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Egerton, F. N. Q. Rev. Biol. 48, 322–350 (1973).

    Google Scholar 

  2. Wiman, I. M. B. Ambio 19, 62–69 (1990).

    Google Scholar 

  3. Elton, C. Animal Ecology and Evolution (Oxford University Press, New York, 1930).

    Google Scholar 

  4. Simberloff, D. Synthese 43, 3–39 (1980).

    Google Scholar 

  5. May, R. M. Nature 261, 459–467 (1976).

    ADS  CAS  PubMed  Google Scholar 

  6. May, R. M. & Oster, G. F. Am. Nat. 974, 573–599 (1976).

    Google Scholar 

  7. May, R. M. Science 186, 645–647 (1974).

    ADS  CAS  PubMed  Google Scholar 

  8. McCallum, H. I. J. theor. Biol. 154, 277–284 (1992).

    Google Scholar 

  9. Feigenbaum, M. J. J. Stat. Phys. 19, 25–52 (1977).

    ADS  Google Scholar 

  10. Collet, P. & Eckmann, J. P. Iterated Maps on the Interval as Dynamical System (Progress in Physics, Birkhauser, Boston, 1980).

    MATH  Google Scholar 

  11. Metropolis, N., Stein, M. L. & Stein, P. R. J. combin. Theor. A 15, 25–44 (1973).

    Google Scholar 

  12. Beyer, W. A., Mauldin, R. D. & Stein, P. R. J. math. Anal. Appl. 115, 305–362 (1986).

    MathSciNet  Google Scholar 

  13. Bier, M. & Bountis, C. Phys. Lett. A 104, 239–244 (1984).

    MathSciNet  Google Scholar 

  14. Bellows, T. S. Jr J. Anim. Ecol. 50, 139–156 (1981).

    MathSciNet  Google Scholar 

  15. Hassell, M. P., Lawton, J. H. & May, R. M. J. anim. Ecol. 45, 471–486 (1976).

    Google Scholar 

  16. Tilman, D. & Wedin, D. Nature 353, 653–655 (1992).

    ADS  Google Scholar 

  17. Pacala, S. W. & Silander, J. A. Jr Am. Nat. 125, 385–411 (1985).

    Google Scholar 

  18. May, R. M. Am. Nat. 125, 573–584 (1985).

    Google Scholar 

  19. Altenberg, L. Am. Nat. 138, 51 (1991).

    Google Scholar 

  20. Kot, M., Sayler, G. S. & Schultz, T. W. Bull. math. Biol. 54, 619–648 (1992).

    Google Scholar 

  21. Guevara, M. R., Glass, L. & Shrier, A. Science 214, 1350–1353 (1981).

    ADS  CAS  PubMed  Google Scholar 

  22. May, R. M. & Anderson, R. M. Proc. R. Soc. B 219, 281–313 (1983).

    ADS  CAS  Google Scholar 

  23. Nusse, H. A. & Yorke, J. A. Phys. Lett. A 127, 328–334 (1988).

    MathSciNet  Google Scholar 

  24. Knobloch, E. & Weiss, N. O. Physica 9D, 379–407 (1983).

    ADS  Google Scholar 

  25. Contopoulos, G. Lett. Nuovo Cimento 37, 149–153 (1983).

    ADS  MathSciNet  Google Scholar 

  26. King, R., Barchas, J. D. & Huberman, B. A. Proc. natn. Acad. Sci. U.S.A. 81, 1244–1247 (1984).

    ADS  CAS  Google Scholar 

  27. Swinney, H. L. Physica 7D, 3–15 (1983).

    ADS  MathSciNet  CAS  Google Scholar 

  28. Coffman, K., McCormick, W. D. & Swinney, H. L. Phys. Rev. Lett. 56, 999–1002 (1986).

    ADS  CAS  PubMed  Google Scholar 

  29. Belair, J. & Glass, L. Phys. Lett. A 127, 113–116 (1983).

    Google Scholar 

  30. Kan, I. & Yorke, J. Bull. Am. Math. Soc. 23, 469–476 (1990).

    Google Scholar 

  31. Dawson, S. P., Grebogi, C., Yorke, J. A., Kan, I. & Kocak, H. Phys. Lett. A 162, 249–254 (1992).

    MathSciNet  Google Scholar 

  32. Dawson, S. P. & Grebogi, C. Chaos Solitons Fract. 1, 137–144 (1991).

    ADS  Google Scholar 

  33. Turchin, P. & Taylor, A. D. Ecology 73, 289–305 (1992).

    Google Scholar 

  34. Berryman, A. A. Trends Ecol. Evol. 7, 316 (1992).

    CAS  PubMed  Google Scholar 

  35. Stone, L. Proc. R. Soc. B 250, 77–81 (1992).

    ADS  CAS  Google Scholar 

  36. Sprott, J. C. Phys. Lett. A 173, 21–24 (1993).

    MathSciNet  Google Scholar 

  37. Ginzburg, L. R. Trends Ecol. Evol. 7, 133 (1992).

    CAS  PubMed  Google Scholar 

  38. Taylor, P. J. Oikos 54, 121–126 (1989).

    Google Scholar 

  39. Taylor, P. J. Oikos 55, 434–436 (1989).

    Google Scholar 

  40. Devaney, R. L. An Introduction to Chaotic Dynamical Systems (Addison-Wesley, California, 1989).

    MATH  Google Scholar 

  41. Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Science 257, 1230–1235 (1992).

    ADS  CAS  PubMed  Google Scholar 

  42. Mackay, R. S. & Tresser, C. Physica 27D, 412–422 (1987).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, L. Period-doubling reversals and chaos in simple ecological models. Nature 365, 617–620 (1993). https://doi.org/10.1038/365617a0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365617a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing