Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Convergent combination therapy can select viable multidrug-resistant HIV-1 in vitro

Abstract

THE reverse transcriptase enzyme of human immunodeficiency virus type 1 (HIV-1) is the target for many inhibitors1. Amino-acid substitutions in functional regions of the enzyme that abolish reverse transcriptase activity also prevent HIV-1 replication2,3. But selection pressure by drugs such as AZT (3'-azido-3'-deoxythymid-ine, zidovudine)4–6, ddl (2',3'-dideoxyinosine)7,8 and non-nucleoside reverse transcriptase inhibitors (NNRTIs)9–14 causes outgrowth of resistant variants due to non-lethal mutations in the enzyme7,9–16. Reports of synergy17–19 and lack of cross-resistance between reverse transcriptase inhibitors (refs 7, 9, 10, 12–14, 17, 18, 20, 21), plus the reversal of AZT resistance by mutations induced by ddl7 and NNRTIs14, have indicated that specific drug combinations directed at reverse transcriptase might curtail resistance. Chow et al.22 extended this concept in a report that specific multiple combinations of resistance mutations in the reverse transcriptase can significantly impair HIV-1 replication. They concluded that evolutionary limitations may exist to prevent the emergence of multidrug resistance to inhibitors of reverse transcriptase22. We report here that HIV-1 co-resistant to AZT, ddl and the NNRTI nevirapine23 can be readily selected in cell culture starting with dual AZT- and ddl-resistant virus. We found no evidence for 'replication incompatible' combinations of resistance mutations, although a mutation (M184→V) conferring oxathiolane-cytosine nucleoside resistance in reverse transcriptase24,25 completely sup-pressed AZT resistance in a triple-resistant background. These in vitro observations suggest that triple drug combination therapy might ultimately result in co-resistant HIV-1, although they do not preclude assessment of such combinations for treatment of HIV-1 disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Clercq, E. AIDS Res. hum. Retrovir. 8, 119–134 (1992).

    Article  CAS  Google Scholar 

  2. Larder, B. A., Purifoy, D. J. M., Powell, K. L. & Darby, G. Nature 327, 716–717 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Larder, B. A., Kemp, S. D. & Purifoy, D. J. M. Proc. natn. Acad. Sci. U.S.A. 86, 4803–4807 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Larder, B. A., Darby, G. & Richman, D. D. Science 243, 1731–1734 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Richman, D. D., Grimes, J. M. & Lagakos, S. W. J. AIDS 3, 743–746 (1990).

    CAS  Google Scholar 

  6. Boucher, C. A. B. et al. Lancet 336, 585–590 (1990).

    Article  CAS  Google Scholar 

  7. St Clair, M. H. et al. Science 253, 1557–1559 (1991).

    Article  ADS  CAS  Google Scholar 

  8. McLeod, G. X., McGrath, J. M., Ladd, E. A. & Hammer, S. M. Antimicrob. Ag. Chemother. 36, 920–925 (1992).

    Article  CAS  Google Scholar 

  9. Nunberg, J. H. et al. J. Virol. 65, 4887–4892 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Richman, D. D. et al. Proc. natn. Acad. Sci. U.S.A. 88, 11241–11245 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Mellors, J. W. et al. Molec. Pharmac. 41, 446–451 (1992).

    CAS  Google Scholar 

  12. Balzarini, J. et al. Virology 192, 246–253 (1993).

    Article  CAS  Google Scholar 

  13. Dueweke, T. J. et al. Proc. natn. Acad. Sci. U.S.A. 90, 4713–4717 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Larder, B. A. Antimicrob. Ag. Chemother. 36, 2664–2669 (1992).

    Article  CAS  Google Scholar 

  15. Larder, B. A. & Kemp, S. D. Science 246, 1155–1158 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Kellam, P., Boucher, C. A. B. & Larder, B. A. Proc. natn. Acad. Sci. U.S.A. 89, 1934–1938 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Richman, D. et al. Antimicrob. Ag. Chemother. 35, 305–308 (1991).

    Article  CAS  Google Scholar 

  18. Goldman, M. E. et al. Proc. natn. Acad. Sci. U.S.A. 88, 6863–6867 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Johnson, V. A. et al. J. inf. Dis. 164, 646–655 (1991).

    Article  CAS  Google Scholar 

  20. Larder, B. A., Chesebro, B. & Richman, D. D. Antimicrob. Ag. Chemother. 34, 436–441 (1990).

    Article  CAS  Google Scholar 

  21. Fitzgibbon, J. E. et al. Antimicrob. Ag. Chemother. 36, 153–157 (1992).

    Article  CAS  Google Scholar 

  22. Chow, Y.-K. et al. Nature, 361, 650–653 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Merluzzi, V. J. et al. Science 250, 1411–1413 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Schinazi, R. F. et al. Antimicrob. Ag. Chemother. 37, 875–881 (1993).

    Article  CAS  Google Scholar 

  25. Tisdale, M., Kemp, S. D., Parry, N. R. & Larder, B. A. Proc. natn. Acad. Sci. USA 90, 5653–5656 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Emini, E. A. et al. Nature 364, 679 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Chow, Y.-K., Hirsch, M. S., Kaplan, J. C. & D'Aquilla, R. T. Nature 364, 679 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Larder, B. A., Purifoy, D. J. M., Powell, K. L. & Darby, G. EMBO J. 6, 3133–3137 (1987).

    Article  CAS  Google Scholar 

  29. Larder, B. A. & Boucher, C. A. B. in Diagnostic Molecular Microbiology: Principles and Applications (eds Persing, D. H., Smith, T. F., Tenover, F. C. & White, T. J.) 527–533 (Am. Soc. Microbiol., Washington DC, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larder, B., Kellam, P. & Kemp, S. Convergent combination therapy can select viable multidrug-resistant HIV-1 in vitro. Nature 365, 451–453 (1993). https://doi.org/10.1038/365451a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/365451a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing