Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simulating the critical behaviour of complex fluids

Abstract

ALTHOUGH the liquid–gas phase equilibria of simple fluids have been studied extensively since the seminal work of van der Waals, the properties of fluids with more complex molecular structures, such as polymers, present a less tractable problem both theoretically and experimentally. The phase behaviour of hydrocarbons is of particular importance for the petrochemical industry. But despite significant experimental and theoretical efforts, the phase diagrams of the straight-chain alkanes longer than decane (C10) are known only partially, and even qualitative aspects such as the chain-length dependence of the critical properties are poorly understood. Until recently it was considered impossible to estimate the critical properties of such complex fluids using computer simulations. Here we report Monte Carlo simulations of the phase diagrams of alkanes with unbranched carbon chains as long as C48, up to the vicinity of the liquid–vapour critical points. Our calculations show that, in contrast to the traditional view, the critical density of the long-chain alkanes decreases rather than increases with carbon number. This work indicates that simulations can be used as an 'engineering tool' to estimate properties that are not readily accessible experimentally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tsonopoulos, C. A.I.Ch.E. JI 33, 2080–2083 (1987).

    Article  CAS  Google Scholar 

  2. Panagiotopoulos, A. Z. Molec. Phys. 61, 813–826 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Panagiotopoulos, A. Z., Quirke, N., Stapleton, M. & Tildesley, D. J. molec. Phys. 63, 527–545 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Siepmann, J. I. & Frenkel, D. Molec. Phys. 75, 59–70 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Frenkel, D., Mooij, G. C. A. M. & Smit, B. J. Phys.: Condensed Matter 4, 3053–3076 (1992).

    ADS  Google Scholar 

  6. Mooij, G. C. A. M., Frenkel, D. & Smit, B. J. Phys.: Condensed Matter 4, L255–L259 (1992).

    ADS  Google Scholar 

  7. Laso, M., de Pablo, J. J. & Suter, U. W. J. chem. Phys. 97, 2817–2819 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Siepmann, J. I. & McDonald, I. R. Molec. Phys. 79, 457–473 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Smit, B., de Smedt, Ph. & Frenkel, D. Molec. Phys. 68, 931–950 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Smit, B. & Williams, C. P. J. Phys.: Condensed Matter 2, 4281–4288 (1990).

    ADS  Google Scholar 

  11. Jorgensen, W. L., Madura, J. D. & Swenson, C. J. J. Am. chem. Soc. 106, 6638–6646 (1984).

    Article  CAS  Google Scholar 

  12. Toxvaerd, S. J. chem. Phys. 93, 4290–4295 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Tsonopoulos, C. & Tan, Z. Fluid Phase Equilibria 83, 127–138 (1993).

    Article  CAS  Google Scholar 

  14. Anselme, M. J., Gude, M. & Teja, A. S. Fluid Phase Equilibria 57, 317–326 (1990).

    Article  CAS  Google Scholar 

  15. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  16. Van der Ploeg, P. & Berendsen, H. J. C. J. chem. Phys. 76, 3271–3276 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Smith, B. D. & Srivastava, R. Thermodynamics Data for Pure Compounds: Hydrocarbons and Ketones (Elsevier, Amsterdam, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siepmann, J., Karaborni, S. & Smit, B. Simulating the critical behaviour of complex fluids. Nature 365, 330–332 (1993). https://doi.org/10.1038/365330a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365330a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing