Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase

Abstract

PROTEIN disulphide isomerase (PDI)1,2 is a highly abundant and ubiquitous eukaryotic protein that is essential for viability in yeast3,4. Although PDI is thought to catalyse disulphide bond formation and isomerization during protein biosynthesis, PDI has been found previously to have only moderate effects (25-fold) on the rate of oxidative folding of proteins in vitro. In addition, PDI has been implicated in several apparently unrelated cellular functions3. For example, PDI is the β-subunit of prolyl 4-hydroxylase5 and is part of the trigylceride transfer complex6. The oxidative folding of bovine pancreatic trypsin inhibitor (BPTI) is slow and inefficient in vitro7–11. Here we report that PDI increases by a factor of 3,000–6,000 the rates of folding of kinetically trapped BPTI folding intermediates, in which native structure impedes disulphide bond formation. By contrast, PDI has only small effects on the rate of disulphide bond formation in intermediates that are oxidized readily in the absence of PDI. These results suggest that an important function of PDI is to catalyse disulphide bond formation and rearrangements within kinetically trapped, structured folding intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldberger, R. F., Epstein, C. J. & Anfinsen, C. B. J. biol. Chem. 238, 628–635 (1963).

    CAS  PubMed  Google Scholar 

  2. Venetianer, P. & Straub, F. B. Biochem. biophys. Acta 67, 166–168 (1963).

    Article  CAS  Google Scholar 

  3. Noiva, R. & Lennarz, W. J. J. biol. Chem. 267, 3553–3556 (1991).

    Google Scholar 

  4. Freedman, R. B. in Protein Folding (ed. Creighton, T. E.) 481–488 (Freeman, New York, (1992).

    Google Scholar 

  5. Pihlajaniemi, T. et al. EMBO J. 6, 643–649 (1987).

    Article  CAS  Google Scholar 

  6. Wetterau, J. R., Combs, K. A., Spinner, S. N. & Joiner, B. J. J. biol. Chem. 265, 9800–9807 (1990).

    CAS  PubMed  Google Scholar 

  7. Creighton, T. E. J. molec. Biol. 113, 275–293 (1977).

    Article  CAS  Google Scholar 

  8. Creighton, T. E. & Goldenberg, D. P. J. molec. Biol. 179, 497–526 (1984).

    Article  CAS  Google Scholar 

  9. Weissman, J. S. & Kim, P. S. Science 253, 1386–1393 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Weissman, J. S. & Kim, P. S. Proc. natn. Acad. Sci. U.S.A. 89, 9900–9904 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Weissman, J. S. & Kim, P. S. Cell 71, 841–851 (1992).

    Article  CAS  Google Scholar 

  12. Creighton, T. E. & Charles, I. G. J. molec. Biol. 194, 11–22 (1987).

    Article  CAS  Google Scholar 

  13. Creighton, T. E., Hillson, D. A. & Freedman, R. B. J. molec. Biol. 142, 43–62 (1980).

    Article  CAS  Google Scholar 

  14. Zapun, A., Creighton, T. E., Rowling, P. J. E. & Freedman, R. B. Proteins 14, 10–15 (1992).

    Article  CAS  Google Scholar 

  15. Hwang, C., Sinskey, A. J. & Lodish, H. F. Science 257, 1496–1502 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Lyles, M. M. & Gilbert, H. F. Biochemistry 30, 613–619 (1991).

    Article  CAS  Google Scholar 

  17. Kaji, E. H. & Lodish, H. F. J. biol. Chem. (in the press).

  18. Noiva, R., Kimura, H., Roos, J. & Lennarz, W. J. J. biol. Chem. 266, 19645–19649 (1991).

    CAS  PubMed  Google Scholar 

  19. Morjana, N. A. & Gilbert, H. F. Biochemistry 30, 4985–4990 (1991).

    Article  CAS  Google Scholar 

  20. Flynn, G. C., Chappell, T. G. & Rothman, J. E. Science 245, 385–390 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Deisenhofer, J. & Steigemann, W. Acta crystallogr. B31, 238–250 (1975).

    Article  CAS  Google Scholar 

  22. Wlodawer, A., Walter, J., Huber, R. & Sjölin, L. J. molec. Biol. 180, 301–329 (1984).

    Article  CAS  Google Scholar 

  23. Lee, B. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  24. Stassinopoulou, C. I., Wagner, G. & Wüthrich, K. Eur. J. Biochem. 145, 423–430 (1984).

    Article  CAS  Google Scholar 

  25. States, D. J., Dobson, C. M., Karplus, M. & Creighton, T. E. J. molec. Biol. 174, 411–418 (1984).

    Article  CAS  Google Scholar 

  26. Eigenbrot, C., Randal, M. & Kossiakoff, A. A. Protein Engng 3, 591–598 (1990).

    Article  CAS  Google Scholar 

  27. van Mierlo, C. P. M., Darby, N. J., Neuhaus, D. & Creighton, T. E. J. molec. Biol. 222, 353–371 (1991).

    Article  CAS  Google Scholar 

  28. Morjana, N. A., McKeone, B. J. & Gilbert, H. F. Proc. natn. Acad. Sci. U.S.A. 90, 2107–2111 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissman, J., Kimt, P. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365, 185–188 (1993). https://doi.org/10.1038/365185a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365185a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing