Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cambrian sea water preserved as inclusions in marine low-magnesium calcite cement

Abstract

THE existence of temporal changes in the chemical composition of the oceans, which could provide constraints on the potential variability of the ocean–atmosphere; system, remains an open question. Assessments of the chemistry of ancient oceans have relied largely on analysis of marine precipitates, generally carbonate and evaporite minerals1. These studies suggest that, whereas marine salinity has remained relatively stable over Phanerozoic time1, magnesium, calcium and sulphate concentrations of ancient oceans and CO2 partial pressure of ancient atmospheres may have changed2–4. The ratios of isotopes of carbon, oxygen, sulphur and strontium also appear to have varied3,5,6. Here we present analyses of primary, one-phase fluid inclusions in Cambrian and Ordovician marine cements, which appear to represent aliquots of early Palaeozoic oceans. The cements have trace element, stable isotope and strontium isotope contents that are consistent with their having been precipitated in a Cambrian–Ordovician marine environment, and the fluids have marine salinities. As these (apparently primary) cements are low-magnesium calcite, unlike the predominantly high-magnesium calcite and aragonite of today's carbonate precipitates, the chemistry of the Cambrian ocean–atmosphere system seems to have been different from that of today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

    Book  Google Scholar 

  2. Wilkinson, B. H. & Algeo, T. J. Am. J. Sci. 239, 1158–1194 (1989)

    Article  ADS  Google Scholar 

  3. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, I. Chem. Geol. 28, 199–260 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Berner, R. A. Science 249, 1382–1386 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Lohmann, K. C. & Walker, J. C. G. Geophys. Res. Lett. 16, 319–322 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Burke, W. H. et al. Geology 10, 516–519 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Sandberg, P. A. Nature 305, 19–22 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Mackenzie, F. T. & Pigott, J. D. J geol. Soc. Lond. 138, 183–196 (1981).

    Article  CAS  Google Scholar 

  9. Wilkinson, B. H., Owen, R. M. & Carroll, A. R. J. sedim. Petrol. 55, 171–183 (1985).

    Google Scholar 

  10. Palmer, T. J., Hudson, J. D. & Wilson, M. A. Nature 335, 809–810 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Bathurst, R. G. C. Carbonate Sediments and their Diagenesis (Elsevier, Amsterdam, 1975).

    Google Scholar 

  12. Wilkinson, B. H. J. geol. Educ. 30, 189–203 (1982).

    Article  CAS  Google Scholar 

  13. Sandberg, P. A. in The Carbon Cycle and Atmospheric CO2 Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 585–594 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  14. Roedder, E. Fluid Inclusions (Min. Soc. of America, Washington DC, 1984).

  15. Goldstein, R. H. J. sedim. Petrol. 60, 282–292 (1990).

    Google Scholar 

  16. Lyman, J. & Fleming, R. H. J. mar. Res. 3, 134–146 (1940).

    CAS  Google Scholar 

  17. Purser, B. H. & Seiboid, E. in The Perslon Gulf: Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea (ed. Purser, B. H.) 1–9 (Springer, Berlin, 1973).

    Book  Google Scholar 

  18. Carpenter, S. J. et al. Geochim. cosmochim. Acta 55, 1991–2010 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Ripperdan, R. L., Margaritz, M., Nicoll, R. S. & Shergold, J. H. Geology 20, 1039–1042 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Gonzalez, L. A. & Lohmann, K. C. Geology 13, 811–814 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Major, R. P. & Wilber, R. J. Bull. geol. Soc. Am. 103, 461–471 (1991).

    Article  CAS  Google Scholar 

  22. Carpenter, S. J. & Lohmann, K. C. Geochim. cosmochim. Acta 56, 1837–1849 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Lohmann, K. C. & Meyers, W. J. J. sedim. Petrol. 48, 475–488 (1977).

    Google Scholar 

  24. Schlager, W. & James, N. P. Sedimentology 25, 675–702 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Weiss, C. P. & Wilkinson, B. H. J. sedim. Petrol 58, 468–478 (1988).

    Google Scholar 

  26. Brand, U. & Veizer, J. J. sedim. Petrol. 50, 1219–1236 (1980).

    CAS  Google Scholar 

  27. Wilkinson, B. H. Geology 7, 524–527 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, W., Goldstein, R. Cambrian sea water preserved as inclusions in marine low-magnesium calcite cement. Nature 362, 335–337 (1993). https://doi.org/10.1038/362335a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362335a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing