Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The temperatures and oxygen-isotope composition of early Devonian oceans

Abstract

THE oxygen isotope composition of pre-Carboniferous (>360 Myr old) marine carbonates, cherts and phosphates has been reported1–8 to be lower than that of later (post-Devonian) samples. According to one explanation1,3, this is a reflection of warmer (generally ≥40°C) pre-Carboniferous oceans relative to modern oceans. Alternatively, it has been proposed5,7 that the pre-Carboniferous oceans were depleted in 18O (by 2‰ SMOW) relative to modern oceans. Here I report high δ18O values (−1.9 to −2.9‰ PDB) in normal, shallow-marine limestones (and three brachiopod shells) from the Lower Devonian Haragan and Bois d'Arc formations in south-central Oklahoma. I interpret these values as near-primary, and therefore constraining the temperature and oxygen isotope composition of early Devonian sea water to 25±7 °C and 0±1‰ SMOW respectively. In conjunction with similarly high δ18O values obtained from older (Ordovician and Silurian) samples8, these results imply that the temperature and oxygen isotope composition of pre-Carboniferous oceans may, at least during some time intervals, have been similar to those of modern oceans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knauth, L. P. & Epstein, S. Geochim. cosmochim. Acta 40, 1095–1108 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Shemesh, A. et al. Earth planet. Sci. Lett 64, 405–416 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Karhu, J. & Epstein, S. Geochim. cosmochim. Acta 50, 1745–1756 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Popp, B. N. et al. Geol. Soc. Am. Bull. 97, 1262–1269 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Veizer, J. et al. Geochim cosmochim. Acta 50, 1679–1696 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Hudson, J. D. & Anderson, T. F. Trans. R. Soc. Edinb. 80, 183–192 (1989).

    Article  CAS  Google Scholar 

  7. Lohmann, K. C. & Walker, J. C. G. Geophys. Res. Lett. 16, 319–322 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Wadleigh, M. A. & Veizer, J. Geochim. cosmochim. Acta 56, 431–443 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Amsden, T. W. Oklahoma Geol. Surv. Bull. 78, 9–144 (1958a).

    Google Scholar 

  10. Amsden, T. W. Oklahoma Geol. Surv. Bull. 82, 1–110 (1958b).

    Google Scholar 

  11. Barrick, J. E. et al. Oklahoma Geol. Surv. Guidebook 27, 55–62 (1990).

    Google Scholar 

  12. Gao, G. Geochim. cosmochim. Acta 54, 1979–1989 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Rush, P. F. & Chafetz, H. S. J. sedim. Petrol. 60, 968–981 (1990).

    Google Scholar 

  14. Lavoie, D. Geol. Soc. Am Abstr. Progr. 24, A37 (1992).

    Google Scholar 

  15. Land, L. S. in Concepts and Models of Dolomitization (eds Zenger D. H. et al.). Soc. Econ. Palaeont. Mineral. Spec. Publ. 28, 87–110 (1980).

    Book  Google Scholar 

  16. Amsden, T. W. Am. Assoc. Petrol. Geol. Bull. 46, 1502–1519 (1962).

    Google Scholar 

  17. Kastner, M. et al. Nature 321, 158–161 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Chaudhuri, S. et al. Geochim. cosmochim. Acta 51, 45–53 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Burke, W. H. et al. Geology 10, 516–519 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Veizer, J. Soc. Econ. Palaeont. Mineral. Short Course 10, 3–1 to 3–100 (1983).

    Google Scholar 

  21. Carpenter, S. J. et al. Geochim. cosmochim. Acta 55, 1991–2010 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Heckel, P. H. & Witzke, B. J. Palaeont. Assoc. London spec. Pap. Palaeontol. 23, 99–123 (1979).

    Google Scholar 

  23. Johnson, K. S. et al. in The Geology of America, vol. D-2 Sedimentary Cover—North American Craton (ed. Sloss, L. L.) 307–359 (Geol. Soc. Am., Boulder, Colorado, 1988).

    Google Scholar 

  24. Muehlenbachs, K. & Clayton, R. N. J. geophys. Res. 81, 4365–4369 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Gregory, R. T. & Taylor, H. P. Jr J. geophys. Res. 86, 2737–2755 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ Press. 1984).

    Google Scholar 

  27. Friedman, I. & O'Neil, J. R. U.S. Geol. Surv. prof. Pap. 440K (1977).

  28. Marshall, J. D. & Middleton, P. D. J. geol. Soc. London 147, 1–4 (1990).

    Article  CAS  Google Scholar 

  29. Gao, G. & Land, L. S. Geochim. cosmochim. Acta 55, 2911–2920 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, G. The temperatures and oxygen-isotope composition of early Devonian oceans. Nature 361, 712–714 (1993). https://doi.org/10.1038/361712a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361712a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing