Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA polymerase-α is essential for mating-type switching in fission yeast

Abstract

IN the fission yeast Schizosaccharomyces pombe, the double-stranded chromosomal break (DSB) at the mating-type locus (mat1) initiates recombination during mating-type switching1–3. A constant DSB level is maintained throughout the cell-cycle1. In the strand-segregation model for mating-type switching, it was postulated that if the DSB is generated during or soon after mat1 replication4, one of the chromatids could be repaired and switched during replication in the next cell cycle, while the other chromatid inherits the break3–6. Here we report a molecular characterization of swi7, one of the genes required for DSB formation. Surprisingly, a gene complementing the swi7 mutation maps to chromosome I and encodes S. pombe DNA polymerase-α. Disruption of this gene is lethal in both switching and non-switching strains, as expected. S. pombe DNA polymerase-α must therefore play a role in generating the DSB at mat1, suggesting that DSB formation is coupled with DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beach, D. H. Nature 305, 682–688 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Beach, D. H. & Klar, A. J. S. EMBO J. 3, 603–610 (1984).

    Article  CAS  Google Scholar 

  3. Egel, R., Beach, D. H. & Klar, A. J. S. Proc. natn. Acad. Sci. U.S.A. 81, 3481–3485 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Klar, A. J. S. Nature 326, 466–470 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Klar, A. J. S. EMBO J. 9, 1407–1415 (1990).

    Article  CAS  Google Scholar 

  6. Klar, A. J. S., Bonaduce, M. J. & Cafferkey, R. Genetics 127, 489–496 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  8. Damagnez, V., Tillit, J., deRecondo, A. M. & Baldacci, G. Molec. gen. Genet. 226, 182–189 (1991).

    Article  CAS  Google Scholar 

  9. Wang, T. S.-F., Wong, S. W. & Korn, D. FASEB J. 3, 14–21 (1989).

    Article  CAS  Google Scholar 

  10. Gutz, H. & Schmidt, H. Curr. Genet. 9, 325–331 (1985).

    Article  CAS  Google Scholar 

  11. Munz, P., Wolf, K., Kohli, J. & Leupold, U. In Molecular Biology of the Fission Yeast (eds Nasim, A., Young, P. & Johnson, B. F.) 1–30 (Academic, New York, 1989).

    Book  Google Scholar 

  12. Perkins, D. Genetics 34, 607–626 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan, J.-B., Grothues, D. & Smith, C. L. Nucleic Acids Res. 19, 6289–6294 (1991).

    Article  CAS  Google Scholar 

  14. Miyata, H. & Miyata, M. J. gen. appl. Microbiol. 27, 365–371 (1981).

    Article  Google Scholar 

  15. Egel, R. & Eie, B. Curr. Genet. 12, 429–433 (1987).

    Article  Google Scholar 

  16. Egel, R. Curr. Genet. 8, 205–210 (1984).

    Article  CAS  Google Scholar 

  17. Tsurimoto, T., Melendy, T. & Stillman, B. Nature 346, 534–539 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Nielsen, O. & Egel, R. EMBO J. 8, 269–276 (1989).

    Article  CAS  Google Scholar 

  19. Miller, A. M. & Nasmyth, K. A. Nature 312, 247–251 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Rivier, D. H. & Rine, J. Science 256, 659–663 (1992).

    Article  ADS  CAS  Google Scholar 

  21. DePamphilis, M. L. Cell 52, 635–638 (1988).

    Article  CAS  Google Scholar 

  22. Edgar, L. G. & McGhee, J. D. Cell 53, 589–599 (1988).

    Article  CAS  Google Scholar 

  23. Wright, A., Maundrell, K., Heyer, W. D., Beach, D. & Nurse, P. Plasmid 15, 156–158 (1986).

    Article  CAS  Google Scholar 

  24. Moreno, S., Klar, A. & Nurse, P. Meth. Enzym. 194, 795–823 (1991).

    Article  CAS  Google Scholar 

  25. Russell, P. in Molecular Biology of the Fission Yeast (eds Nasim, A., Young, P. & Johnson, B.) 244–271 (Academic, New York, 1989).

    Google Scholar 

  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. In Molecular Cloning: A Laboratory Manual (2nd edn, Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  27. Engelke, U. et al. Curr. Genet. 12, 535–542 (1987).

    Article  CAS  Google Scholar 

  28. Arcangioli, B. & Klar, A. J. S. EMBO J. 10, 3025–3032 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Klar, A. DNA polymerase-α is essential for mating-type switching in fission yeast. Nature 361, 271–273 (1993). https://doi.org/10.1038/361271a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361271a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing