Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for melt segregation towards fractures in the Horoman mantle peridotite complex

Abstract

MELT segregation from a solid matrix in the upper mantle is the first step in the formation of magmas. The mechanisms of melt segregation proposed so far have been based on two different physical models: the percolation of interstitial melt driven by a density difference between melt and matrix, associated with compaction and deformation of the matrix1; or the suction of interstitial melt into fractures from a surrounding porous matrix2–4. Although the latter process was originally invoked to explain the occurrence of dunite and pyroxenite–gabbro dykes with zones depleted in melt component on both sides2,5–7, most of these zones are discordant, small in scale and clearly formed by reaction between peridotite and basaltic melt8. I have suggested9 that thick, concordant dunite zones in the most depleted peridotite layers of the Horoman peridotite complex formed by suction of partial melt towards fractures later filled by dunite. Here I report a detailed mineralogical variation across the dunite which, when set in its geological and petrographic context, provides clearer evidence for melt segregation by dynamic forcing3, rather than passive percolation. This mechanism of melt segregation may play an important role in the formation of primary magmas with low production rate and large geochemical variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKenzie, D. J. J. Petrol. 25, 713–765 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Nicolas, A. & Jackson, M. J. Petrol. 23, 568–582 (1982).

    Article  ADS  Google Scholar 

  3. Ribe, N. M. Geophys. Rev. Lett. 13, 1462–1465 (1986).

    Article  ADS  Google Scholar 

  4. Sleep, N. H. J. geophys. Res. 93, 10255–10272 (1988).

    Article  ADS  Google Scholar 

  5. Quick, J. E. J. geophys. Res. 86, 11837–11863 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Quick, J. E. Contrib. Miner. Petrol. 78, 413–422 (1981).

    Article  ADS  Google Scholar 

  7. Nicolas, A. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. (Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  8. Kelemen, P. B. J. Petrol. 31, 51–98 (1990).

    Article  ADS  Google Scholar 

  9. Takahashi, N. J. Miner. Petr. Econ. Geol. 86, 199–215 (1991).

    Article  CAS  Google Scholar 

  10. Nagasaki, H. J. Fac. Sci. Univ. Tokyo 16, 313–346 (1966).

    CAS  Google Scholar 

  11. Niida, K. J. geol. Soc. Jap. 80, 31–44 (1974).

    Article  Google Scholar 

  12. Niida, K. J. Fac. Sci. Hokkaido Univ. Ser IV 21, 61–81 (1984).

    Google Scholar 

  13. Obata, M. & Nagahara, N. J. geophys. Res. 92, 3467–3474 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Takahashi, N. in Ophiolite Genesis and Evolution of Oceanic Lithosphere (eds Peters, Tj., Nicolas, A. & Coleman, R. G.) 195–205 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  15. Miyashiro, A. J. Petrol. 2, 277–311 (1961).

    Article  ADS  CAS  Google Scholar 

  16. Takahashi, N. & Arai, S. Sci. Rep. Inst. Geosci. Univ. Tsukuba. Sec. B 10, 45–55 (1989).

    Google Scholar 

  17. Navon, O. & Stolper, E. J. Geol. 95, 285–307 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Irvine, T. N. in Physics of Magmatic Processes (ed. Hargraves, R. B.) 325–383 (Princeton Univ. Press, 1980).

    Google Scholar 

  19. Takazawa, E., Frey, A. F., Shimizu, N. & Obata, M. EOS, 72, 537 (1991).

    Google Scholar 

  20. Takazawa, E., Frey, A. F., Shimizu, N., Obata, M. & Boainier, J. L. Nature 359, 55–58 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Frey, F. A., Shimizu, N., Leinbach, A., Obata, M. & Takazawa, E. J. Petrol., spec. Lherzolite Issue. 211–227 (1991).

    Google Scholar 

  22. Rabinowicz, M., Nicolas, A. & Vigneresse, J. L. Earth planet. Sci. Lett. 67, 97–108 (1984).

    Article  ADS  Google Scholar 

  23. Rabinowicz, M., Ceuleneer, G. & Nicolas, A. J. geophys. Res. 92, 3475–3486 (1987).

    Article  ADS  Google Scholar 

  24. Ceuleneer, G., Nicolas, A. & Boudier, F. Tectonophysics 151, 1–26 (1988).

    Article  ADS  Google Scholar 

  25. Arai, S. Neues Jb Miner. Monatshefte. 8, 347–354 (1987).

    Google Scholar 

  26. Dick, H. J. B. & Bullen, T. Contrib. Miner. Petrol. 86, 54–76 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, N. Evidence for melt segregation towards fractures in the Horoman mantle peridotite complex. Nature 359, 52–55 (1992). https://doi.org/10.1038/359052a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359052a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing