Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 28 June 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 357, 515 - 518 (11 June 1992); doi:10.1038/357515a0

Novel form of growth cone motility involving site-directed actin filament assembly

Paul Forscher*, Chi Hung Lin* & Corey Thompson

* Department of Biology, Yale University, New Haven, Connecticut 06511, USA
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA

REGULATION of cytoskeletal structure and motility by extracellular signals is essential for all directed forms of cell movement and underlies the developmental process of axonal guidance in neuronal growth cones. Interaction with polycationic microbeads can trigger morphogenic changes in neurons and muscle cells normally associated with formation of pre- and postsynaptic specializations1,2. Furthermore, when various types of microscopic particles are applied to the lamellar surface of a neuronal growth cone or motile cell they often exhibit retrograde movement at rates of 1–6 µ min−1 (refs 3–6). There is strong evidence that this form of particle movement results from translocation of membrane proteins associated with cortical F-actin networks, not from bulk retrograde lipid flow4,5,7 and may be a mechanism behind processes such as cell locomotion, growth cone migration and capping of cell-surface antigens6,8,9. Here we report a new form of motility stimulated by polycationic bead interactions with the growth-cone membrane surface. Bead binding rapidly induces intracellular actin filament assembly, coincident with a production of force sufficient to drive bead movements. These extracellular bead movements resemble intracellular movements of bacterial parasites known to redirect host cell F-actin assembly for propulsion. Our results suggest that site-directed actin filament assembly may be a widespread cellular mechanism for generating force at membrane–cytoskeletal interfaces.

------------------

References

1. Peng, H. B., Cheng, P. & Luther, P. W. Nature 292, 831−834 (1981). | Article | PubMed | ISI | ChemPort |
2. Peng, H. B., Markey, D. R., Muhlach, W. L. & Pollack, E. D. Synapse 1, 10−19 (1987). | Article | PubMed | ISI | ChemPort |
3. Bray, D. Proc. natn. Acad. Sci. U.S.A. 65, 905−910 (1970). | ChemPort |
4. Forscher, P. & Smith, S. J. Optical Microscopy for Biology 459−471 (Wiley-Liss, New York, 1990).
5. Sheetz, M. P., Turney, S., Qian, H. & Elson, E. L. Nature 340, 284−288 (1989). | Article | PubMed | ISI | ChemPort |
6. Bray, D. & White, J. G. Science 239, 883−888 (1988). | PubMed | ChemPort |
7. Lee, J., Gustafsson, M., Magnusson, K. & Jacobson, K. Science 247, 1229−1233 (1990). | PubMed | ChemPort |
8. Mitchison, T. J. & Kirschner, M. Neuron 1, 761−772 (1988). | Article | PubMed | ISI | ChemPort |
9. Smith, S. J. Science 242, 708−715 (1988). | PubMed | ISI | ChemPort |
10. Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Proc. natn. Acad. Sci. U.S.A. 87, 6068−6072 (1990). | ChemPort |
11. Tilney, L. G., Connelly, P. S. & Portnoy, D. A. J. Cell Biol. 111, 2979−2988 (1990). | Article | PubMed | ChemPort |
12. Forscher, P. & Smith, S. J. J. Neurosci. 7, 3600−3611 (1987). | PubMed | ISI | ChemPort |
13. Forscher, P. & Smith, S. J. J. Cell Biol. 107, 1505−1516 (1988). | Article | PubMed | ISI | ChemPort |



© 1992 Nature Publishing Group
Privacy Policy