Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal assembly and phylogenetic evolution in heterococcoliths

Abstract

COCCOLITHS, the calcite plates formed by unicellular phyto-planktonic algae (coccolithophores, phylum Prymnesiophyta)1, are produced in enormous quantities and probably constitute the largest single carbonate sink in oceanic biogeochemical cycles. They are major sediment formers, are of great value to geologists as biostratigraphic indicators and have been extensively studied as models for biomineralization2,3. We have applied the understanding of coccolith biomineralization to the fossil record4 and present evidence from electron and optical microscopy that there has been a conserved mechanism of crystal nucleation throughout the 230 million year history of coccolithophores. This fundamental feature of coccolith growth, which we term the V/R model, involves the assembly of a ring of single crystals with alternating orientations, radial (R) and vertical (V), and provides a powerful tool for tracing phylogenies, identifying homologous structures and rationalizing the higher taxonomy of the group. The living cocco-lithophorid, Emiliania huxleyi, seemed anomalous because only R crystals had been observed; transmission electron microscopy of proto-coccolith rings, however, revealed relict V crystals which are overgrown by preferential development of R units in complete coccoliths. A speculative model based on a plicated macromolecular template is presented as a possible explanation for the conserved nucleation process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Green, J. G., Perch-Nielsen, K. & Westbroek, P. in Handbook of Protoctista (eds Margulis, L., Corliss, J. O., Melkonian, M. & Chapman, D. J.) 293–317 (Jones and Bartlett, Woods Hole, 1989).

    Google Scholar 

  2. Lowenstam, H. A. & Weiner, S. On Biomineralization (Oxford University Press, 1989).

    Google Scholar 

  3. Simkiss, K. & Wilbur, K. M. Biomineralization: Cell Biology and Mineral Deposition (Academic Press, San Diego, 1989).

    Google Scholar 

  4. Young, J. R. & Bown, P. R. Palaeontology 34, 843–850 (1991).

    Google Scholar 

  5. Perch-Nielsen, K. in Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. D. & Perch-Nielsen, K.) 329–554 (Cambridge University Press, 1985).

    Google Scholar 

  6. Wilbur, K. M. & Watabe, N. Ann N. Y. Acad. Sci. 103, 82–112 (1963).

    ADS  Google Scholar 

  7. Klaveness, D. Protistologica 12, 217–224 (1976).

    CAS  Google Scholar 

  8. Westbroek, P. et al Phil. Trans. R. Soc. B304, 435–444 (1984).

    Article  ADS  Google Scholar 

  9. Manton, I. & Leedale, G. F. J. mar. Biol. Ass. U. K. 49, 1–16 (1969).

    Article  Google Scholar 

  10. Young, J. R. in Nannofossils and their Applications, (eds Crux, J. & Heck, S. E. van) 1–20 (Ellis Horwood, Chichester, 1989).

    Google Scholar 

  11. Young, J. R. & Westbroek, P. Mar. Micropalaeont. 18, 5–23 (1991).

    Article  ADS  Google Scholar 

  12. Romein, A. J. T. Utrecht Micropalaeont. Bull. 22, 1–231 (1979).

    Google Scholar 

  13. Moshkovitz, S. & Osmond, K. in Nannofossils and their Applications, (eds Crux, J. & Heck, S. E. van) 76–97 (Ellis Horwood, Chichester, 1989).

    Google Scholar 

  14. Prins, B. in Proc. 1st Conf. Planktonic Microfossils Vol. 2 (eds Bronnimann, P. & Renz, H. H.) 547–558 (Brill, Leiden, 1969).

    Google Scholar 

  15. Bown, P. R. Spec. Pap. Palaeont. 38, 1–118 (1987).

    Google Scholar 

  16. Gartner, S. Univ. Kansas Paleont. Conts. paper 28, 1–4.

  17. Braarud, T., Gaarder, K. R., Markali, J. & Nordli, E. Nytt Mag. Bott. 1, 129–134 (1952).

    Google Scholar 

  18. Watabe, N. Calcif. Tissue Res. 1, 114–127 (1967).

    Article  CAS  Google Scholar 

  19. Mann, S. & Sparks, N. H. C. Proc. R. Soc. B234, 441–453 (1988).

    ADS  Google Scholar 

  20. Emburg, P. R. van Coccolith formation in Emiliania huxleyi, 1–145 (University of Leiden Geobiochemistry Unit, 1989).

    Google Scholar 

  21. Westbroek, P., Young, J. R. & Linschooten, K. J. Protozool. 36, 368–373 (1989).

    Article  Google Scholar 

  22. Gallagher, L. in Nannofossils and their Applications (eds Crux, J. & Heck, S. E. van) 41–75 (Ellis Horwood, Chichester, 1989).

    Google Scholar 

  23. Vrind-de Jong, E. W. de et al. in Biomineralization in Lower Plants and Animals (eds Leadbeater, B. S. C. & Riding, R.) 204–220 (Oxford University Press, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, J., Didymus, J., Brown, P. et al. Crystal assembly and phylogenetic evolution in heterococcoliths. Nature 356, 516–518 (1992). https://doi.org/10.1038/356516a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356516a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing