Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss

Abstract

OBSERVATIONS from satellite and ground-based instruments1–3 indicate that between 1979 and 1990 there have been statistically significant losses of ozone in the lower stratosphere of the middle to high latitudes in both hemispheres. Here we determine the radiative forcing of the surface–troposphere system4–6 due to the observed decadal ozone losses, and compare it with that due to the increased concentrations of the other main radiatively active gases (CO2, CH4, N2O and chlorofluorocarbons) over the same time period. Our results indicate that a significant negative radiative forcing results from ozone losses in middle to high latitudes, in contrast to the positive forcing at all latitudes caused by the CFCs and other gases. As the anthropogenic emissions of CFCs and other halocarbons are thought to be largely responsible for the observed ozone depletions1, our results suggest that the net decadal contribution of CFCs to the greenhouse climate forcing is substantially less than previously estimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. WMO/UNEP Scientific Assessment of Ozone Depletion: 1991 (WMO. Geneva, in the press).

  2. Stolarski, R. S., Bloomfield, P., McPeters, R. D. & Herman, J. R. Geophys. Res. Lett. 18, 1015–1018 (1991).

    Article  ADS  CAS  Google Scholar 

  3. McCormick, M. P., Veiga, R. E. & Chu, W. P. Geophys. Res. Lett. (in the press).

  4. Shine, K. P., Derwent, R. G., Wuebbles, D. J. & Morcrette, J.-J. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T. et al.) 41–68 (Cambridge University Press, 1990).

    Google Scholar 

  5. Ramanathan, V. & Dickinson, R. E. J. atmos. Sci. 36, 1084–1104 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Ramanathan, V. et al. Rev. Geophys. 25, 1441–1482 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Hansen, J. et al. Science 213, 957–966 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Fels, S. B. & Kaplan, L. D. J. atmos. Sci. 33, 779–789 (1975).

    Article  ADS  Google Scholar 

  9. Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D. & Sinclair, R. W. J. atmos. Sci. 37, 2265–2297 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Kiehl, J. T. & Boville, B. A. J. atmos. Sci. 45, 1798–1817 (1988).

    Article  ADS  Google Scholar 

  11. London, J. College of Engineering, New York Univ. Rep. contract AF19(122)–165 (NTIS No 117227) (1957).

  12. Mahlman, J. D. & Umscheid, L. in Dynamics of the Middle Atmosphere (eds Holton, J. R. & Matsuno, T.) 501–525 (Terrapub, Tokyo, 1984).

    Book  Google Scholar 

  13. Shine, K. P. J. atmos. Sci. 48, 1513–1518 (1991).

    Article  ADS  Google Scholar 

  14. Slingo, A. & Schrecker, H. M. Q. Jl R. met. Soc. 108, 407–426 (1982).

    Article  ADS  Google Scholar 

  15. Malkmus, W. J. opt. Soc. Am. 57, 323–329 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Solomon, S. et al. Nature 321, 755–758 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Kiehl, J. T. & Solomon, S. J. atmos. Sci. 43, 1525–1534 (1986).

    Article  ADS  Google Scholar 

  18. Shine, K. P. Q. Jl R. met. Soc. 113, 603–633 (1987).

    Article  ADS  Google Scholar 

  19. Lacis, A. A., Wuebbles, D. J. & Logan, J. A. J. geophys. Res. 95, 9971–9981 (1990).

    Article  ADS  Google Scholar 

  20. Ramanathan, V., Cicerone, R. J., Singh, H. B. & Kiehl, J. T. J. geophys. Res. 90, 5547–5566 (1985).

    Article  ADS  CAS  Google Scholar 

  21. WMO Report of the International Ozone Trends Panel 1988, ch. 6, Global Ozone Research and Monitoring Project Rep. No. 18 (1989).

  22. Kiehl, J. T., Boville, B. A. & Briegleb, B. P. Nature 332, 501–504 (1988).

    Article  ADS  Google Scholar 

  23. Shine, K. P. Geophys. Res. Lett. 13, 1331–1334 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Angell, J. K. J. Clim. 1, 1296–1313 (1988).

    Article  ADS  Google Scholar 

  25. Oort, A. & Liu, H. J. Clim. (in the press).

  26. WMO Scientific Assessment of Stratospheric Ozone: 1989, ch. 1, Global Ozone Research and Monitoring Project Rep. No. 20, (1990).

  27. Wang, W.-C. Dudek, M. P., Liang, X.-Z. & Kiehl, J. T. Nature 350, 573–577 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramaswamy, V., Schwarzkopf, M. & Shine, K. Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss. Nature 355, 810–812 (1992). https://doi.org/10.1038/355810a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355810a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing