Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 28 May 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 355, 717 - 719 (20 February 1992); doi:10.1038/355717a0

Reduction of nitrate and nitrite in water by immobilized enzymes

Robert B. Mellor, Jörg Ronnenberg, Wilbur H. Campbell* & Stephen Diekmann

Mobitec GmbH, Wagenstieg 5, D-3400 Gottingen, Germany
*Phytotechnology Research Center, Michigan Technological University, Houghton, Michigan 49931, USA

NITRATE, a common and serious contaminant of ground water, is removed at present either by physicochemical methods that do not degrade it, or via degradation by microorganisms, which is a slow process1. We report here a rapid and efficient process for nitrate removal which involves catalytic reduction by immobilized enzymes. The reduction is driven by an electrical current, and results in complete conversion of nitrate to N2 without residues. Our electro-bioreactor was constructed by co-immobilizing the enzymes (purified NADH: nitrate reductase from Zea mays 2 and crude nitrite reductase and N2O reductase from Rhodop-seudomonas 3) with electron-carrying dyes in a polymer matrix, which was then attached in thin layers to the surface of the cathode. Nitrate-laden water is pumped past the anode and through the active matrix on the cathode while a low voltage is applied, resulting in two-stage nitrate reduction to N2 via nitrite. The enzyme activity is higher in the co-immobilized state than in free solution. In principle, such electro-bioreactors could be developed for removal of other water contaminants such as pesticides, if appropriate enzymes and cofactors can be identified.

------------------

References

1. Well, G. & Kalbertodt, S. Bioengineering 6, 21−31 (1989).
2. Hyde, G. et al. Plant molec. Biol. 13, 233−246 (1989). | ChemPort |
3. Neu, H. D. & Heppel, L. A. J. Biol. Chem. 240, 3685−3692 (1965). | PubMed | ISI | ChemPort |
4. Mirvish, S. Nature 315, 461−462 (1985). | Article | PubMed | ChemPort |
5. Eur. Chem. Industry Ecol. Toxicol. Centre Tech. Rep. 27, Brussels (1988).
6. Murphy, A. P. Nature 350, 223−225 (1991). | Article | ChemPort |
7. Michalski, W. P. & Nicholas, D. J. D. Biochim. biophys. Acta 828, 130−137 (1985). | ChemPort |
8. Michalski, W. P. et al. Biochim. biophys. Acta 872, 50−60 (1986). | ChemPort |
9. Hochstein, L. I. & Tomlinson, G. A. Ann. Rev. Microbiol. 42, 231−261 (1988). | ChemPort |
10. Ferguson, S. J. Trends biochem. Sci. 12, 354−357 (1987). | Article | ISI | ChemPort |
11. Campbell, W. H. Physiol Plant. 74, 214−219 (1988). | ChemPort |
12. Barber, M. J. & Solomonson, L. P. J. biol. Chem. 261, 4562−4567 (1986). | PubMed | ChemPort |
13. Campbell, W. H. Plant Physiol. 82, 729−732 (1986). | ChemPort |
14. Registry of Toxic Effects of Chemical Substances, Natl. Inst. Occupational Safety and Health DW 2275000 (Bethesda, 1982)
15. Black, S. D. & Coon, M. J. Adv. Enzym. 60, 35−87 (1987). | ChemPort |
16. Porter, T. D. Trends biochem. Sci. 16, 154−158 (1991). | Article | PubMed | ChemPort |
17. Biebricher, C. & Luce, R. US Patent No. 4, 177038 (1979).
18. Urata, K., Shimada, K. & Satoh, T. Plant Cell Physiol. 23, 1121−1124 (1982). | ChemPort |



© 1992 Nature Publishing Group
Privacy Policy