Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors

Abstract

THYROID hormones and retinoic acid function through nuclear receptors that belong to the steroid/thyroid-hormone receptor superfamily (reviewed in refs 1–4). Thyroid hormone receptors (TRs) and retinoic acid receptors (RARs) require auxiliary nuclear proteins for efficient DNA binding5–10. Here we report that retinoid X receptors RXRα (ref. 11) is one of these nuclear proteins. RXRα interacts both with TRs and with RARs, forming heterodimers in solution that strongly interact with a variety of T3/retinoic acid response elements. Transfection experiments show that RXRα can greatly enhance the transcriptional activity of TR and RAR at low retinoic acid concentrations that do not significantly activate RXRα itself. Thus, RXRα enhances the transcriptional activity of other receptors and its own ligand sensitivity by heterodimer formation. Our studies reveal a new subclass of receptors and a regulatory pathway controlling nuclear receptor activities by heterodimer formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Green, S. & Chambon, P. Trends Genet. 4, 309–314 (1988).

    Article  CAS  Google Scholar 

  2. Evans, R. M. Science 240, 889–895 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Pfahl, M. et al. in Retinoids in Normal Development and Teratogenesis (ed. G. Morriss-Kay) 51–64 (Oxford University Press, 1992).

    Google Scholar 

  4. Glass, C. K. & Holloway, J. M. Biochim. biophys. Acta 1032, 157–176 (1990).

    CAS  PubMed  Google Scholar 

  5. Zhang, X.-k., Tran, P. B-V. & Pfahl, M. Molec. Endocr. 5, 1909–1920 (1991).

    Article  CAS  Google Scholar 

  6. Rosen, E. D., O'Donnell, A. L. & Koenig, R. J. Molec. cell. Endocr. 78, C83–C88 (1991).

    Article  CAS  Google Scholar 

  7. Murray, M. B. & Towle, H. C. Molec. Endocr. 3, 1434–1442 (1989).

    Article  CAS  Google Scholar 

  8. Lazar, M. A. & Berrodin, T. J. Molec. Endocr. 4, 1627–1635 (1990).

    Article  CAS  Google Scholar 

  9. Glass, C. K., Devary, O. V. & Rosenfeld, M. G. Cell 63, 729–738 (1990).

    Article  CAS  Google Scholar 

  10. Burnside, J., Darling, D. S. & Chin, W. W. J. biol. Chem. 265, 2500–2504 (1990).

    CAS  PubMed  Google Scholar 

  11. Mangelsdorf, D. J., Ong, E. S., Dyck, J. A. & Evans, R. M. Nature 345, 224–229 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Benbrook, D. & Pfahl, M. Science 238, 788–791 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Koenig, R. J. et al. Nature 337, 659–660 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Schueler, P. A., Schwartz, H. L., Strait, K. A., Mariash, C. N. & Oppenheimer, J. H. Molec. Endocr. 4, 227–234 (1990).

    Article  CAS  Google Scholar 

  15. Hermann, T. et al. Cell Regulation 2, 565–574 (1991).

    Article  CAS  Google Scholar 

  16. Hoffmann, B. et al. Molec. Endocr. 4, 1727–1736 (1990).

    Article  CAS  Google Scholar 

  17. de Thé, H., Vivanco-Ruiz, M. M., Tiollais, P., Stunnenberg, M. & Dejean, A. Nature 343, 177–180 (1990).

    Article  ADS  Google Scholar 

  18. Klein-Hitpass, L., Schorpp, M., Wagner, U. & Ryffel, G. U. Cell 46, 1053–1061 (1986).

    Article  CAS  Google Scholar 

  19. Forman, B. M. & Samuels, H. H. Molec. Endocr. 4, 1293–1301 (1990).

    Article  CAS  Google Scholar 

  20. Glass, C. K., Holloway, J. M., Devary, O. V. & Rosenfeld, M. G. Cell 54, 313–323 (1988).

    Article  CAS  Google Scholar 

  21. Graupner, G., Wills, K. N., Tzukerman, M., Zhang, X.-K. & Pfahl, M. Nature 340, 653–656 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  23. Bedo, G., Santisteban, P. & Aranda, A. Nature 339, 231–233 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Hamada, K. Proc. natn. Acad. Sci. U.S.A. 86, 8289–8293 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Millán, J. L. J. biol. Chem. 261, 3112–3115 (1986).

    PubMed  Google Scholar 

  26. Husmann, M. et al. Molec. cell. Biol. 11, 4097–4103 (1991).

    Article  CAS  Google Scholar 

  27. Pfahl, M. et al. Meth. Enzym. 18, 256–270 (1990).

    Article  Google Scholar 

  28. Lehmann, J. M., Hoffmann, B. & Pfahl, M. Nucleic Adas Res. 19, 573–578 (1991).

    Article  CAS  Google Scholar 

  29. Zhang, X.-K. et al. New Biol. 3, 1–14 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Xk., Hoffmann, B., Tran, PV. et al. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355, 441–446 (1992). https://doi.org/10.1038/355441a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355441a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing