Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stationary and drifting spiral waves of excitation in isolated cardiac muscle

Abstract

EXCITABLE media can support spiral waves rotating around an organizing centre1–7. Spiral waves have been discovered in different types of autocatalytic chemical reactions8,9 and in biological systems10–12. The so-called 're-entrant excitation' of myocardial cells13, causing the most dangerous cardiac arrhythmias, including ventricular tachycardia and fibrillation, could be the result of spiral waves1,2. Here we use a potentiometric dye14,15 in combination with CCD (charge-coupled device) imaging technology16,17 to demonstrate spiral waves in the heart muscle. The spirals were elongated and the rotation period, Ts, was about 180 ms (3–5 times faster than normal heart rate). In most episodes, the spiral was anchored to small arteries or bands of connective tissue, and gave rise to stationary rotations. In some cases, the core drifted away from its site of origin and dissipated at a tissue border. Drift was associated with a Doppler shift in the local excitation period, T with T ahead of the core being about 20% shorter thanT behind the core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krinsky, V. I. (ed.) Self-organization: Autowaves and Structures Far from Equilibrium 9–18 (Springer, Berlin, 1984).

  2. Winfree, A. T. J. theor. Biol. 138, 353–405 (1989).

    Article  CAS  Google Scholar 

  3. Keener, J. P. J. appl. Math. 46, 1039–1056 (1986).

    Google Scholar 

  4. Gerhardt, M., Schuster, H. & Tyson, J. J. Science 247, 1563–1566 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Markus, M. & Hess, B. Nature 347, 56–58 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Wiener, N. & Rosenblueth, A. Arch. Inst. Cardiol. Mex. 16, 205–265 (1946).

    CAS  PubMed  Google Scholar 

  7. Krinsky, V. I. Probl. Kibernetiki 20, 59–80 (1968).

    Google Scholar 

  8. Zhabotinsky, A. M. & Zaikin, A. N. Oscillatory Processes in Biological and Chemical Systems Vol. 2 279–283 (Pushchino, on Oka, 1971).

    Google Scholar 

  9. Winfree, A. T. Science 175, 634–636 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Gerisch, G. Curr. Topics dev. Biol. 3, 157 (1968).

    Article  CAS  Google Scholar 

  11. Bures, J. & Gorelova, N. A. J. Neurobiol. 14, 353–363 (1983).

    Article  Google Scholar 

  12. Lechleiter, J., Girard, S., Peralta, E. & Clapham, D. Science 252, 123–126 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Allessie, M. A., Bonke, F. I. M. & Shopman, F. J. G. Circ. Res. 33, 54–62 (1973).

    Article  CAS  Google Scholar 

  14. Salzberg, B. M., Davila, H. V. & Cohen, L. B. Nature 246, 508–509 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Davidenko, J. M., Kent, P. F., Chialvo, D. R., Michaels, D. C. & Jalife, J. Proc. natn. Acad. Sci. U.S.A. 87, 8785–8789 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Blasdel, G. G. & Salama, G. Nature 321, 579–585 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Kauer, J. Nature 331, 166–168 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Frazier, D. W. et al. J. clin. Invest. 83, 1039–1052 (1989).

    Article  CAS  Google Scholar 

  19. Delgado, C., Steinhaus, B., Delmar, M., Chialvo, D. R. & Jalife, J. Circ. Res. 67, 97–110 (1990).

    Article  CAS  Google Scholar 

  20. Zykov, V. S. in Simulation of Wave Processes in Excitable Media (ed. Winfree, A. T.) 93–112 (1987).

    Google Scholar 

  21. Muller, S. C., Plesser, T. & Hess, B. Science 230, 661–663 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Fast, V. G. & Pertsov, A. M. Biophysics 35, 478–481 (1990).

    CAS  Google Scholar 

  23. Ermakova, E. A. & Pertsov, A. M. Biophysics 31, 855–861 (1986).

    Google Scholar 

  24. Cardinal, R., Savard, P., Carson, L., Jean-Benoit, P. & Page, P. Circulation 70, 136–148 (1984).

    Article  CAS  Google Scholar 

  25. Downar, E. et al. J. Am. Coll. Card. 4, 703–714 (1984).

    Article  CAS  Google Scholar 

  26. Li, T., Sperelakis, N., Teneick, R. E. & Solaro, J. R. J. Pharmac. exp. Ther. 232, 688–695 (1985).

    CAS  Google Scholar 

  27. Yamaguchi, T. & Mueller, S. C. Physica D 49, 40–46 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidenko, J., Pertsov, A., Salomonsz, R. et al. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992). https://doi.org/10.1038/355349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355349a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing