Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

Abstract

THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bucher, K. & Fricke, J. Phys. Zeit 21, 237–244 (1980).

    Google Scholar 

  2. Honda, K. & Fujishima, A. Nature 238, 37–39 (1972).

    Article  Google Scholar 

  3. Tufts, B. J. et al. Nature 326, 681–683 (1987).

    Article  Google Scholar 

  4. Gerischer, H. Electrochim. Acta 35, 1677 (1990).

    Article  CAS  Google Scholar 

  5. Licht, S., Hodes, G., Tenne, R. & Manassen, J. Nature 326, 863–864 (1987).

    Article  CAS  ADS  Google Scholar 

  6. Heller, A. Acc. chem. Res. 14, 154–162 (1981).

    Article  CAS  Google Scholar 

  7. Nozik, A. J. Phil. Trans. R. Soc. Lond. A295, 453–470 (1980).

    Article  CAS  ADS  Google Scholar 

  8. Tributsch, H. & Bennet, J. C. J. electroanal. Chem. 81, 97 (1977).

    Article  CAS  Google Scholar 

  9. Wrighton, M. S. Acc. chem. Res. 12, 303–310 (1979).

    Article  CAS  Google Scholar 

  10. Bard, A. J. Science 207, 139 (1980).

    Article  CAS  ADS  Google Scholar 

  11. Memming, R. Phil. Tech. Rev. 38, 160 (1979).

    CAS  ADS  Google Scholar 

  12. Matsumura, M., Nomura, Y. & Tsubomura, H. Bull. chem. Soc. Japan 50, 2533 (1977).

    Article  CAS  Google Scholar 

  13. Alonso, N., Beley, V. M., Chariter, P. & Ern, V. Rev. Phys. Appl. 16, 5 (1981).

    Article  Google Scholar 

  14. Willig, F., Eichberger, R., Sundaresan, N. S. & Parkinson, B. A. J. Am. chem. Soc. 112, 2702–2707 (1990).

    Article  CAS  Google Scholar 

  15. Amadelli, R., Argazzi, R., Bignozzi, C. A. & Scandola, F. J. Am. chem. Soc. 112, 7099–7103 (1990).

    Article  CAS  Google Scholar 

  16. Nazeeruddin, M. K., Liska, P., Moser, J., Vlachopoulos, N. & Grätzel, M. Helv. chim. Acta 73, 1788–1803 (1990).

    Article  CAS  Google Scholar 

  17. Juris, A., Balzani, V., Barigletti, F., Campagna, S., Belzer, B. Coord. Chem. Rev. 84, 85 (1988).

    Article  CAS  Google Scholar 

  18. Anderson, M. A., Gieselmann, M. J. & Xu, Q. J. Membrane Sci. 392, 43 (1988).

    Google Scholar 

  19. O'Regan, B., Moser, J., Anderson, M. & Grätzel, M. J. phys. Chem. 94, 8720–8726 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Regan, B., Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353737a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing