Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radial extension of macrophage tubular lysosomes supported by kinesin

Abstract

THE centrifugal elongation of membranes to form extended tubular structures is a widespread form of intracellular organelle movement. Tubular lysosomes1 and the endoplasmic reticulum2, for example, undergo such extension in association with micro-tubules, and this process has been mimicked in vitro by combining purified microtubules with isolated membranes and the mechano-chemical ATPase kinesin3,4. This, along with evidence that kinesin is associated with the endoplasmic reticulum5, has led to the suggestion that kinesin provides the motive force for the formation and maintenance of elongated tubulovesicular structures in cells6,7. We have addressed this hypothesis in murine macrophages, which have prominent tubular lysosomes whose form depends on the integrity of microtubules. Here we report that two antikinesin antibodies which disrupt in vitro motility will each cause centripetal collapse of the array of tubular lysosomes when scrape-loaded into macrophages. To our knowledge this provides the first in vivo evidence that kinesin is responsible for extension of tubulovesicular structures along microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Swanson, J. A., Bushnell, A. & Silverstein, S. C. Proc. natn. Acad. Sci. U.S.A. 84, 1921–1925 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Lee, C. & Chen, L. B. Cell 54, 37–46 (1988).

    Article  CAS  Google Scholar 

  3. Dabora, S. L. & Sheetz, M. P. Cell 54, 27–35 (1988).

    Article  CAS  Google Scholar 

  4. Vale, R. D. & Hotani, H. J. Cell Biol. 107, 2233–2241 (1988).

    Article  CAS  Google Scholar 

  5. Hollenbeck, P. J. J. Cell Blol. 108, 2335–2342 (1989).

    Article  CAS  Google Scholar 

  6. Sheetz, M. P. Bioessays 7, 165–168 (1987).

    Article  CAS  Google Scholar 

  7. Vale, R. D. A. Rev. Cell Biol. 3, 347–378 (1987).

    Article  CAS  Google Scholar 

  8. Herman, B. & Albertini, D. F. J. Cell Biol. 98, 565–576 (1984).

    Article  CAS  Google Scholar 

  9. Matteoni, R. & Kreis, T. E. J. Cell biol. 105, 1253–1265 (1987).

    Article  CAS  Google Scholar 

  10. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  11. Brady, S. T. Nature 317, 73–75 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Hollenbeck, P. J. Protoplasms 145, 145–152 (1988).

    Article  Google Scholar 

  13. Vale, R. D. et al. Cell 43, 623–632 (1985).

    Article  CAS  Google Scholar 

  14. Ingold, A. L., Cohn, S. A. & Scholey, J. M. J. Cell Biol. 107, 2657–2667 (1988).

    Article  CAS  Google Scholar 

  15. Scholey, J. M., Heuser, J., Yang, J. T. & Goldstein, L. S. B. Nature 338, 355–357 (1989).

    Article  ADS  CAS  Google Scholar 

  16. McNeil, P. L., Murphy, R. F., Lanni, F. & Taylor, D. L. J. Cell Biol. 98, 1556–1564 (1984).

    Article  CAS  Google Scholar 

  17. Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. J. Cell Biol. 108, 1453–1463 (1989).

    Article  CAS  Google Scholar 

  18. Schroer, T. A., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. J. Cell Biol. 107, 1785–1792 (1988).

    Article  CAS  Google Scholar 

  19. Swanson, J. A. J. Cell Sci. 94, 135–142 (1989).

    CAS  PubMed  Google Scholar 

  20. Hollenbeck, P. J., Suprynowicz, F. & Cande, W. Z. J. Cell Biol. 99, 1251–1258 (1984).

    Article  CAS  Google Scholar 

  21. Wessel, D. & Flügge, U, I. Analyst Biochem. 138, 141–143 (1984).

    Article  CAS  Google Scholar 

  22. Bruck, C., Portetelle, D., Glineur, C. & Bollen, A. J. immunol. Meth. 53, 313–319 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollenbeck, P., Swanson, J. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature 346, 864–866 (1990). https://doi.org/10.1038/346864a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346864a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing