Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cadmium and cobalt substitution for zinc in a marine diatom

Abstract

IN the oceans, many trace metals show a surface depletion relative to deep waters that is typical of the principal algal nutrients, N, ¡ and Si, and is therefore presumed to result from biological uptake at the sea surface and regeneration at depth. Among trace metals, cadmium has an especially acute surface depletion1,2, and shows the best correlation with a major algal nutrient (P) 1–3. But the biological reason for Cd surface depletion is particularly puzzling, because unlike other surface-depleted trace elements (for example, Fe, Ni, Co, Zn and Cu), Cd is not known to be required by organisms. However, because Cd can substitute for Zn in some metalloenzymes in vitro4 and in vivo5, we hypothesized that Cd might promote the growth of Zn-limited phytoplankton. Marine phytoplankton are limited by a free Zn ion activity of 10–11.5 M (refs 6, 7), which is similar to the activity estimated for ocean surface waters8 as a result of the low concentration and organic complexation of Zn in the oceans. We now report that, in sea water with low Zn concentration, mimicking conditions of the ocean surface waters, Cd stimulates the growth of the marine diatom Thalassiosira weissflogii by substituting for Zn in certain macromolecules. The substitution is highly effective, in that Zn-defÃcient cells can grow at 90% of their maximum rate when supplied with Cd. We also find that Co can substitute for Zn (although less efficiently than Cd), indicating that Co could be an important nutrient for algal growth for reasons other than its role in vitamin B12 (ref. 9).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boyle, E., Sciater, F. R. & Edmond, J. M. Nature 263, 42–44 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Bruland, K. W., Knauer, G. A. & Martin, J. H. Limnol. Oceanogr. 23, 618–625 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Martin, J., Bruland, K. W. & Broenkow, W. in Marine Pollutant Transfer (eds Windom, H. L. & Duce, R. A.) 159–184 (Heath, Lexington, Massachusetts, 1976).

    Google Scholar 

  4. Bertini, I. & Luchinat, C. in Metal Ions in Biological Systems Vol. 15 (ed. Sigel, H.) 101–156 (Dekker, Basle, 1983).

    Google Scholar 

  5. Rosenbusch, J. P. & Weber, K. Proc. natn. Acad. Sci. U.S.A. 68, 1019–1023 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Anderson, M. A., Morel, F. M. M. & Guillard, R. R. L. Nature 276, 70–71 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Limnol. Oceanogr. 28, 1182–1195 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Bruland, K. W. Limnol. Oceanogr. 34, 269–285 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Babior, B. M. (ed.) Cobalamin: Biochemistry and Pathophysiology (Wiley, New York, 1975).

  10. Morel, F. M. M., Reuter, J. G., Anderson, D. M. & Guillard, R. R. L. J. Phycol. 15, 135–141 (1979).

    Article  CAS  Google Scholar 

  11. Westall, J. C., Zachary, J. L. & Morel, F. M. M. MINEQL: A Computer Program for the Calculation of Chemical Equilibrium Composition of Aqueous Systems (Department of Civil Engineering, MIT. Cambridge, Massachusetts, 1976).

    Google Scholar 

  12. Ringbom, A. Complexation in Analytical Chemistry (Interscience, New York, 1963).

    Google Scholar 

  13. Brand, L. E., Guillard, R. R. L. & Murphy, L. S. J. Plankton Res. 3, 193–201 (1981).

    Article  Google Scholar 

  14. Keller, M. D., Bellows, W. K. & Guillard, R. R. L. J. exp. mar. Biol. Ecol. 117, 279–283 (1988).

    Article  Google Scholar 

  15. Lowry, O. H. et al. J. biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  16. Graham, D., Reed, M. L., Patterson, B. D., Hockley, D. G. & Dwyer, M. R. in Biology and Chemistry of the Carbonic Anhydrases (eds Tashian, R. E. & Hewett-Emmett, D.) 222–237 (New York Academy of Sciences, New York, 1984).

    Google Scholar 

  17. Vallee, B. L. & Galdes, A. Adv. Enzym. 56, 283–430 (1984).

    CAS  Google Scholar 

  18. Perry, M. J. Mar. Biol. 15, 113–119 (1972).

    Article  CAS  Google Scholar 

  19. Gekeler, W., Grill, E., Winnacker, E.-L. & Zenk, M. H. Arch. Microbiol. 150, 197–202 (1988).

    Article  CAS  Google Scholar 

  20. Grill, E., Winnacker, E.-L. & Zenk, M. H. Proc. natn Acad. Sci. U.S.A. 84, 439–443 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Grill, E., Loffler, S., Winnacker, E.-L. & Zenk, M. H. Proc. natn. Acad. Sci. U.S.A. 86, 6838–6842 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Sherrell, R. M. thesis, MIT (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, N., Morel, F. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660 (1990). https://doi.org/10.1038/344658a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344658a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing