Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Monday 23 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 339, 137 - 140 (11 May 1989); doi:10.1038/339137a0

A retina with at least ten spectral types of photoreceptors in a mantis shrimp

Thomas W. Cronin* & N. Justin Marshall

* Department of Biological Sciences, University of Maryland, Baltimore County, Catonsville, Maryland 21228, USA
School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK

STOMATOPOD crustaceans, commonly named mantis shrimps, have compound eyes of unique design. A central band composed of six parallel rows of ommatidia separates two peripheral ommatidial groups, and all three regions view the same area of visual space1–3. In the central bands of members of the stomatopod superfamily Gonodactyloidea, four of the ommatidial rows are built of tiers of photoreceptors; in two of these rows, the photoreceptors themselves contain coloured filters4. Such a design could in principle produce many spectral classes of photoreceptors using only a single visual pigment4,5. We measured the absorption spectra of the coloured filters and the visual pigments in frozen sections of retinae of a typical species, Pseudosquilla ciliata, using end-on microspectrophotometry. The retina contains not one, but as many as ten visual pigments, each in a distinct photoreceptor class, having maximum absorbances at wavelengths from 400 to 539 nm. Because of the unique anatomy of stomatopod eyes, ten or more spectral types of photoreceptors exist in this species.

------------------

References

1. Horridge, G. A. Phil. Trans. R. Soc. 285, 1−59 (1978). | ChemPort |
2. Schiff, H. & Candone, P. Comp. Biochem. Physiol. 83A, 445−455 (1986). | Article |
3. Cronin, T. W. J. crust. Biol. 6, 1−23 (1986).
4. Marshall, N. J. Nature 333, 557−560 (1988). | Article | PubMed | ISI | ChemPort |
5. Hardie, R. C. Nature 333, 499−500 (1988). | Article | PubMed | ChemPort |
6. Stavenga, D. G. & Schwemer, J. in Photoreception and Vision in Invertebrates (ed. Ali, M. A. ) 11−61 (Plenum, New York, 1984). | ChemPort |
7. Goldsmith, T. H. Vision Res. 18, 463−473 (1978). | Article | PubMed | ChemPort |
8. Cronin, T. W. J. comp. Physiol. A156, 679−687 (1985). | Article | ChemPort |
9. Cronin, T. W. & Forward, R. B. Jr, J. comp. Physiol. A162, 463−478 (1988). | Article | ChemPort |
10. Lipetz, L. E. & Cronin, T. W. Vision Res. 28, 1083−1093 (1988). | Article | PubMed | ChemPort |
11. Bruno, M. S., Barnes, S. N. & Goldsmith, T. H. J. comp. Physiol. 120, 123−142 (1977). | Article | ChemPort |
12. Hiller-Adams, P., Widder, E. A. & Case, J. F. J. comp. Physiol. A163, 63−72 (1988). | Article | ChemPort |
13. Avery, J. A., Bowmaker, J. K., Djamgoz, M. B. A. & Downing, J. E. G. J. Physiol., Lond. 334, 23P−24P (1983).
14. Hárosi, F. I. & Hashimoto, Y. Science 222, 1021−1023 (1983). | PubMed | ChemPort |
15. Ohtsuka, T. J. comp. Neurol. 237, 145−154 (1985). | Article | PubMed | ChemPort |
16. Ohtsuka, T. Science 229, 874−877 (1985). | PubMed | ChemPort |
17. Jane, S. D. & Bowmaker, J. K. J. comp. Physiol. A162, 225−235 (1988). | Article | ChemPort |
18. Cummins, D. R. & Goldsmith, T. H. J. comp. Physiol. 142, 199−202 (1981). | Article |
19. Hardie, R. C. in Progress in Sensory Physiology Vol. 5 (ed. Ottoson, D.) 1−79 (Springer, Berlin, 1985).
20. Arikawa, K., Inokuma, K. & Eguchi, E. Naturwissenschaften 74, 297−298 (1987). | Article |
21. Caldwell, R. L. & Dingle, H. Naturwissenschaften 62, 214−222 (1975). | Article |
22. Barlow, H. B. Vision Res. 22, 635−643 (1982). | Article | PubMed | ChemPort |
23. Bowmaker, J. K. Trends neurosci. 6(2), 41−43 (1983). | Article |
24. Dingle, H. Crustaceana 7, 236−240 (1964).
25. Bernard, G. D. J. opt. Soc. Am. A4, 123 (1987).



© 1989 Nature Publishing Group
Privacy Policy