Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stress dependence of the mechanism of the olivine–spinel transformation

Abstract

OLIVINE, α-(Mg,Fe)2SiO4, is the most abundant phase in the Earth's upper mantle. It transforms to high-density polymorphs (α, with the spinel structure and β, with a modified spinel structure) under pressure and temperature conditions appropriate to explain the discontinuity in seismic velocities that defines the base of the upper mantle at 400km depth; the transformation is generally believed to be responsible for that discontinuity1. Knowledge of the mechanism and kinetics of the transformation is important for understanding certain aspects of mantle dynamics, and extensive experimental and theoretical work has been conducted on both natural olivine and several analogous chemical systems. Previously, conflicting results have suggested a reconstructive transformation mechanism2–10, a martensitic mechanism11, 12 and a mechanism that is not entirely consistent with either13–16. The conflicts cannot be explained as different mechanisms operating in different systems17. Here we show that the transformation can proceed by two different mechanisms, depending on the level of nonhydrostatic stress; under hydrostatic pressure or low stresses (at sufficiently high temperatures), nucleation occurs by an incoherent, diffusion-dependent, intercrystalline mechanism proposed by Sung and Burns2, 3 and first demonstrated by Vaughan et al.4 (Fig. 1), whereas under high stresses, nucleation of the high-pressure (γ) polymorph (spinel) occurs by a coherent, shear-induced, intracrystalline mechanism predicted by Poirier18. Thus we are able to reconcile the previously conflicting results, and consideration of the stress levels likely in natural situations leads us to conclude that both mechanisms are geologically relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bina, C. R. & Wood, B. J. Nature 324, 449–451 (1986).

    Article  ADS  Google Scholar 

  2. Sung, C. & Burns, R. G. Tectonophysics 31, 1–32 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Sung, C. & Burns, R. G. Earth planet. Sci. Lett. 32, 165–170 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Vaughan, P. J., Green, H. W. & Coe, R. S. Nature 298, 357–358 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Boland, J. N. & Liebermann, R. C. Geophys. Res. Lett. 10, 87–90 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Rubie, D. C., Tsuchida, Y., Utsumi, W., Kikegawa, T., Shimomura, O. & Yagi, T. 28th High Pressure Conference of Japan 132–133 (1987).

  7. Yagi, T., Akaogi, M., Shimamura, O., Suzuki, T. & Akimoto, S. J. geophys. Res. 92, 6207–6213 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Remsberg, A. R., Boland, J. N., Gasparik, T. & Liebermann, R. C. Phys. chem. Miner. 15, 498–506 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Vaughan, P. J., Green, H. W. & Coe, R. S. Tectonophysics 108, 299–322 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Rubie, D. C. & Champness, P. E. Bull. Miner. 110, 471–480 (1987).

    CAS  Google Scholar 

  11. Lacam, A., Madon, M. & Poirier, J.-P. Nature 228, 155–157 (1980).

    Article  ADS  Google Scholar 

  12. Boland, J. N. & Liu, L. Nature 303, 233–235 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Hamaya, N. & Akimoto, S. in High Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. E.) 373–389 (Center Academic, Tokyo, 1982).

    Book  Google Scholar 

  14. Hamaya, N. & Akimoto, S. Phys. Earth Planet. Inter. 29, 6–11 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Furnish, M. D. & Bassett, W. A. J. geophys. Res. 88, 333–342 (1983).

    Article  Google Scholar 

  16. Will, G. & Lauterjung, J. in High Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono, Y.) Geophys. Monogr. 39, 177–186 (American Geophysical Union, Washington, DC, 1987).

    Google Scholar 

  17. Green, H. W., Geophys. Res. Lett. 11, 817–820 (1984).

    Article  ADS  Google Scholar 

  18. Poirier, J.-P. in Anelastic Properties and Related Process in the Earth's Mantle Geodyn. Ser. 4, 113–117 (American Geophysical Union, Washington, DC, 1981).

    Google Scholar 

  19. Burnley, P. C. & Green, H. W. Eos 69, 1416–1417 (1988).

    Google Scholar 

  20. Green, H. W. Geophys. Mongr. 36, 201–211 (1986).

    Google Scholar 

  21. Burnley, P. C. & Green, H. W. Eos 68, 1471 (1987).

    Google Scholar 

  22. Green, H. W. & Borch, R. S. Eur. J. Miner. (in the press).

  23. Webb, S. L., Jackson, I. & Takei, H. Phys. Chem. Miner. 11, 167–171 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Hornstra, J. J. phys. Chem. Solids 15, 311–323 (1960).

    Article  ADS  CAS  Google Scholar 

  25. Remsberg, A. R., Boland, J. N., Gasparik, T. & Liebermann, R. C. Eos 68, 1539 (1987).

    Google Scholar 

  26. Putnis, A. & Price, G. D. Nature 280, 217–218 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Price, G. C., Putnis, A. & Agrell, S. O. Contrib. Miner. Petrol. 71, 211–218 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Price, G. D., Putnis, A. & Smith, D. G. W. Nature 296, 729–730 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnley, P., Green, H. Stress dependence of the mechanism of the olivine–spinel transformation. Nature 338, 753–756 (1989). https://doi.org/10.1038/338753a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338753a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing