Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of aqueous aluminium and organic acids on measurement of acid neutralizing capacity in surface waters

Abstract

ACID neutralizing capacity (ANC) is used to quantify the acid-base status of surface waters. Acidic waters have been defined as having ANC values less than zero, and acidification is often quantified by decreases in ANC. Measured and calculated values of ANC generally agree, except for low-ANC waters. These waters, however, are of primary interest in lake-acidification studies. The discrepancy in ANC values is greatest for waters with high concentrations of aluminium and/or dissolved organic carbon (DOC). The discrepancy due to aluminium increases with increasing concentration of dissolved monomeric aluminium (Alm) and can exceed 50 (μeq 1−1 at low pH and high Alm values. Here we show that this error can be minimized by using a proton reference level for aqueous aluminium of 2+, rather than 0 or 3+, as is done usually. The value of 2+ is consistent with the mean charge on aluminium at the equivalence point of strong-acid titrations. The discrepancy between calculated and measured ANC also increases with increasing DOC concentrations, exceeding 50 μeq 1−1 for waters with DOC concentrations greater than 800 μmol C 1−1 (1000 μmol C 1-1 = 12 mg 1−1 DOC). This error can be decreased by titrating to a low consistent pH value (for example, 3.0). This reduces the systematic underestimation of ANC due to curvature in Gran1 plot analysis, while still allowing accurate measurement of increments in hydrogen-ion concentration. ANC should not be used as a single parameter for characterizing the chemical suitability of surface waters for biota or for assessing the susceptibility of low-ANC waters to acidification by acid deposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gran, G. Analyst 77, 661–671 (1952).

    Article  ADS  CAS  Google Scholar 

  2. Omernik, S. M. & Powers, C. S. Total Alkalinity of Surface Waters—National Map. Corvallis Environmental Research Laboratory (US EPA, Corvallis, 1982).

    Google Scholar 

  3. Goldstein, R. A., Gherini, S. A., Chen, C. W., Mok, L. & Hudson, R. J. M. Phil. Trans. R. Soc. Lond. B305, 409–425 (1984).

    Article  ADS  Google Scholar 

  4. Christophersen, N., Seip, H. M. & Wright, R. F. Water Resour. Res. 18, 977–997 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Reuss, J. O. & Johnson, D. W. J. Environ. Qual. 14, 26–31 (1985).

    Article  CAS  Google Scholar 

  6. Cosby, B. J., Hornberger, G. M., Galloway, J. N. & Wright, R. F. Water Resour. Res. 21, 51–63 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Nikolaidis, N. P., Rajaram, H., Schnoor, J. L. & Georgakakos, K. Water Resour. Res. 24, 1983–1996 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Smith, R. A., Alexander, R. B. & Wolman, M. G. Science 235, 1607–1615 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Charles, D. F. & Smol, J. P. Limnol Oceanogr. 33, 1451–1462 (1988).

    ADS  CAS  Google Scholar 

  10. Sullivan, T. J. Acid Deposition and Aquatic Ecosystems: Regional Case Studies (ed. Charles, D. F.) (Springer, New York, in the press).

  11. Altshuller, A. P. & Linthurst, R. A. (eds) The Acidic Deposition Phenomenon and its Effects: Critical Assessment Review Papers Vol. 2 (EPA, Washington, DC, 1984).

  12. Schindler, D. W. Science 239, 149–157 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Chen, C. W., Gherini, S. A., Munson, R. K., Gomez, L. & Donkers, C. J. environ. Engng. 114, 1200–1216 (1988).

    Article  CAS  Google Scholar 

  14. Baker, J. P. & Schofield, C. I. Water Air Soil Pollut. 18, 289–309 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Brown, D. J. A. Bull. Environ. Contam. Toxicol. 30, 582–583 (1983).

    Article  CAS  Google Scholar 

  16. Gherini, S. A. et al. Water Air Soil Pollut 26, 425–459 (1985).

    CAS  Google Scholar 

  17. Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley, New York, 1981).

    Google Scholar 

  18. Church, M. R., Schofield, C. L., Galloway, J. N. & Cosby, B. J. The Integrated Lake-Watershed Acidification Study. Vol. 3, 7-1 to 7-7 (Electric Power Research Institute, Palo Alto, 1984).

    Google Scholar 

  19. Schofield, C. L., Galloway, J. N. & Hendry, G. R. Water Air Soil Pollut. 26, 403–423 (1985).

    CAS  Google Scholar 

  20. Munson, R. K. & Gherini, S. A. Acid Deposition and Aquatic Ecosystems: Regional Case Studies (ed. Charles, D. F.) (Springer, New York, in the press).

  21. Goldstein, R. A., Gherini, S. A., Driscoll, C. T., April, R., Schofield, C. L. & Chen, C. W. Biogeochemistry 3, 5–20 (1987).

    Article  CAS  Google Scholar 

  22. Driscoll, C. T. & Newton, R. M. Environ. Sci. Technol. 19, 1018–1024 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Schecher, W. D. & Driscoll, C. T. Water Resour. Res. 23, 525–534 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Driscoll, C. T. & Bisogni, J. J. Modelling of Total Acid Precipitation (ed. Schnoor, J. L.) 53–72 (Butterworth, Boston, 1984).

    Google Scholar 

  25. Cook, R. B., Kelley, C. A., Kingston, J. C. & Kreis, R. G. Jr. Biogeochemistry 4, 97–117 (1987).

    Article  CAS  Google Scholar 

  26. Oliver, B. G., Malcolm, R. L., & Thurman, E. M. Geochim. cosmochim. Acta 47, 2031–2035 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Stevenson, F. J. Humus Chemistry (Wiley, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, T., Driscoll, C., Gherini, S. et al. Influence of aqueous aluminium and organic acids on measurement of acid neutralizing capacity in surface waters. Nature 338, 408–410 (1989). https://doi.org/10.1038/338408a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338408a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing