Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of technetium in red giants by γ- ray-induced fission

Abstract

The discovery of technetium in red giant stars1 was a landmark in stellar nucleosynthesis theory. Because of the short half-lives of its isotopes, the presence of technetium has been regarded as irrefutable evidence for a recent episode of slow-neutron capture ('s-process') in asymptotic giant branch stars2–6. But the 100 or so stars with technetium lines in their spectra7, 8 (Tc stars) show the opposite correlation between metallicity and technetium production to that expected to result3, 4 ,9 from an s-process. Here we argue that the production of technetium in red giant stars is not necessarily related to an interior s-process mechanism, and that some observations of technetium in metal-rich (population I) red giants may be more readily explained by γ-ray-induced fission of heavy isotopes (atomic mass A≈ 240) initially present in the stellar envelope.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Merrill, P. Astrophys. J. 116, 21–26 (1952).

    Article  ADS  CAS  Google Scholar 

  2. Iben, I. Jr & Renzini, A. A. Rev. Astr. Astrophys. 21, 271–342 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Hollowell, D. E. thesis, Univ. of Illinois (1988).

  4. Lattanzio, J. C. in Proc. Evolution of Peculiar Red Giant Stars, IAU Coll. 106, (Indiana Univ.) (1988).

    Google Scholar 

  5. Mathews, G. J., Takahashi, K., Ward, R. A. & Howard, W. M. Astrophys. J. 302, 410–414 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Malaney, R. A. Astrophys. J. 321, 832–845 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Little, S. J., Little-Marenin, I. R. & Hagen Bauer, W. Astr. J. 94, 981–995 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Smith, V. V. & Lambert, D. L. Astrophys. J. 333, 219–226 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Iben, I. Jr & Renzini, A. Astrophys. J. 259, L79–L83 (1983).

    Article  ADS  Google Scholar 

  10. Harrison, T. G. Astrophys. Lett. 18, 7–12 (1976).

    ADS  CAS  Google Scholar 

  11. Harrison, T. G. Astrophys. Lett. 16, 87–95 (1975).

    ADS  CAS  Google Scholar 

  12. Dakowski, M. Earth planet. Sci. Lett. 6, 152 (1969).

    Article  ADS  CAS  Google Scholar 

  13. Kuchowicz, B. Astrophys. Lett. 9, 85–89 (1971).

    ADS  CAS  Google Scholar 

  14. Kuroda, P. K. Nature 187, 36–38 (1960).

    Article  ADS  CAS  Google Scholar 

  15. Alexander, E. C., Lewis, R. S., Reynolds, J. H. & Michel, M. D. Science 172, 837–840 (1971).

    Article  ADS  CAS  Google Scholar 

  16. Selinov, I. P. in Proc. 2nd UN Int. Conf. on the Peaceful uses of Atomic Energy 30, 307–326 (Unit. Nations, Geneva, 1958).

    Google Scholar 

  17. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2362–2380 (1982).

    Article  ADS  Google Scholar 

  18. Cowley, C. R. & Adelman, S. J. Astrophys. Lett. 16, 5–7 (1975).

    ADS  CAS  Google Scholar 

  19. Gorbachev, V. M., Zamyatnin, Y. S. & Lbov, A. A. Nuclear Reactions in Heavy Elements (Pergamon, Oxford, 1980).

    Google Scholar 

  20. Evans, R. D. The Atomic Nucleus (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  21. Vandenbosch, R. & Huizenga, J. R. Nuclear Fission (Academic, New York, 1973).

    Google Scholar 

  22. Sweigart, A. V. & Gross, P. G. Astrophys. J. Suppl. 36, 405–437 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Boothroyd, A. I. & Sackmann, I.-J. Astrophys. J. 238, 671–679 (1988).

    Article  ADS  Google Scholar 

  24. Smith, V. V. in Origin and Distribution of the Elements (ed. Mathews, G. J.) 535–541 (World Scientific, Singapore, 1988).

    Google Scholar 

  25. Smith, V. V. & Lambert, D. L. Astrophys. J. 311, 843–863 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Dominy, J. F. & Wallerstein, G. Astrophys. J. 310, 371–377 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Wallerstein, G. & Dominy, J. F. Astrophys. J. 330, 937–941 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Malaney, R. A., Mathews, G. J. & Dearborn, D. S. P. Astrophys. J. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malaney, R. Production of technetium in red giants by γ- ray-induced fission. Nature 337, 718–720 (1989). https://doi.org/10.1038/337718a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337718a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing