Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arginine vasopressin enhances pHi regulation in the presence of HCO3 by stimulating three acid-base transport systems

Abstract

Growth factors raise intracellular pH (pHi) by stimulating Na+/H+ exchange in the absence of HCO3 (refs 1-4). In mutant cells that lack the Na+/H+ exchange activity, this alkalinization does not occur, and the cells do not proliferate without artificial elevation of pHi5,6. It has therefore been widely suggested that an early pHi increase is a necessary signal for mitogenesis. In the presence of HCO3 however, growth factors fail to raise pHi in A431 cells7, renal mesangial cells8 and 3T3 fibroblasts9. In mesangial cells, arginine vasopressin (AVP) raises pHi in the absence of HCO+3, but lowers it when HCO3 is present; growth is stimulated under both conditions8. We report here that, in the presence of HCO3, AVP stimulates two potent HCO3 transporters, as well as the Na+/H+ exchanger. These are the Na+-depen-dent and Na+-independent Cl/HCO3 exchangers. Our results indicate that AVP causes acidification in the presence of HCO3 because, at the resting pHi, it stimulates Na+-independent Cl/HCO3exchange (which lowers pHi) more than it stimulates the sum of Na+/H+ exchange and Na+-dependent Cl/HCO3 exchange (both of which raise pHi). The stimulation of three acid-base transporters by the growth factor AVP greatly enhances the ability of the cell to regulate pHi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schuldiner, S. & Rozengurt, E. Proc. natn. Acad. Sci. U.S.A. 79, 7778–7782 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Moolenaar, W. H., Tsien, R. Y., van der Saag, P. T. & de Laat, S. W. Nature 304, 645–648 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Rothenberg, P., Glaser, L., Schlesinger, P. & Cassel, D. J. biol. Chem. 20, 12644–12653 (1983).

    Google Scholar 

  4. Grinstein, S., Cohen, S., Goetz, J. D., Rothstein, A. & Gelfand, E. W. Proc. natn. Acad. Sci. U.S.A. 82, 1429–1433 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Pouyssegur, J., Sardet, C., Franchi, A., L'Allemain, G. & Paris, S. Proc. natn. Acad. Sci. U.S.A. 81, 4833–4837 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Pouyssegur, J., Franchi, A., L'Allemain, G. L. & Paris, S. FEBS Lett. 190, 115–119 (1985).

    Article  CAS  Google Scholar 

  7. Cassel, D., Whiteley, B., Zhuang, Y. X. & Glaser, L. J. Cell Physiol. 122, 178–186 (1985).

    Article  CAS  Google Scholar 

  8. Ganz, M. B., Boyarsky, G., Boron, W. F. & Sterzel, R. B. Am. J. Physiol. 254, F787–F794 (1988).

    CAS  PubMed  Google Scholar 

  9. Moolenaar, W. H. J. biol. Chem. (in the press).

  10. Boyarsky, G., Ganz, M. B., Sterzel, B. & Boron, W. F. Am. J. Physiol. 255, C844–C856 (1988).

    Article  CAS  Google Scholar 

  11. Boyarsky, G., Ganz, M. B., Sterzel, B. & Boron, W. F. Am. J. Physiol. 255, C857–C869 (1988).

    Article  CAS  Google Scholar 

  12. Boron, W. F. & De Weer, P. J. gen. Physiol. 67, 91–112 (1976).

    Article  CAS  Google Scholar 

  13. Boron, W. F. & Boulpaep, E. L. J. gen. Physiol. 81, 53–94 (1983).

    Article  CAS  Google Scholar 

  14. Roos, A. & Boron, W. F. Physiol. Rev. 61, 296–434 (1981).

    Article  CAS  Google Scholar 

  15. Lovett, D. H., Ryan, J. L. & Sterzel, R. B. J. Immun. 131, 2830–2836 (1983).

    CAS  PubMed  Google Scholar 

  16. Rink, T. J., Tsien, R. Y. & Pozzan, T. J. Cell Biol. 95, 189–196 (1982).

    Article  CAS  Google Scholar 

  17. Thomas, J. A., Buchsbaum, R. N., Zimniak, A. & Racker, E. Biochemistry 81, 2210–2218 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganz, M., Boyarsky, G., Sterzel, R. et al. Arginine vasopressin enhances pHi regulation in the presence of HCO3 by stimulating three acid-base transport systems. Nature 337, 648–651 (1989). https://doi.org/10.1038/337648a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337648a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing