Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rate of evolution slowed by a dormant propagule pool

Abstract

Theoretical models of plant seed banks and common sense suggest that stores of dormant propagules must slow down the rate of genetic change1,2 because they sequester a substantial fraction of the gene pool from the influence of microevolutionary processes in each generation. The magnitude of the effect must represent a balance between the extent of selection and the fraction of the dormant pool that returns to the active population in each generation (and the other microevolutionary processes of migration, drift and mutation). For most populations, in which to observe the action of selection is difficult in itself, detecting the added influence of a dormant propagule pool will be more difficult still. Here we report the effect of hatching of diapausing eggs from lake sediments on the rate of phenotypic change in two populations of the freshwater copepod, Diaptomus sanguineus. When the input of new eggs to the sediments was eliminated by a brief but intense two-year appearance of predators, the role of dormant stages in slowing evolution was clearly seen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Templeton, A. R. & Levin, D. A. Am. Nat. 114, 232–249 (1979).

    Article  Google Scholar 

  2. Brown, J. S. & Venable, D. L. Am. Nat. 127, 31–47 (1986).

    Article  Google Scholar 

  3. Hairston, N. G. Jr & Munns, W. R. Jr Am. Nat. 123, 733–751 (1984).

    Article  Google Scholar 

  4. Hairston, N. G. Jr & Olds, E. J. Oecalogia 61, 42–48 (1984).

    Article  ADS  Google Scholar 

  5. Hairston, N. G. Jr, Walton, W. E. & Li, K. T. Limnol. Oceanogr. 28, 935–947 (1983).

    Article  ADS  Google Scholar 

  6. Hairston, N. G. Jr, Olds, E. J. & Munns, W. R. Jr Verh. int. Verein. theor. angew. Limnol. 22, 3170–3177 (1985).

    Google Scholar 

  7. Hairston, N. G. Jr & Walton, W. E. Proc. natn. Acad. Sci. U.S.A. 83, 4831–4833 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Hairston, N. G. Jr in Predation: Direct and Indirect Impacts on Aquatic Communities (eds Kerfoot, W. C. & Sih, A.) 281–290 (University Press New England, Hanover, New Hampshire, 1987).

    Google Scholar 

  9. Hairston, N. G. Jr & Spalding, J. Am. Nat. 131, 678–699 (1988).

    Article  Google Scholar 

  10. Falconer, D. S. Introduction to Quantitative Genetics 2nd edn (Longmann, New York, 1981).

    Google Scholar 

  11. Marcus, N. H. Mar. Ecol. Prog. Ser. 15, 47–54 (1984).

    Article  ADS  Google Scholar 

  12. Champeau, A. Ann. Fac. Sci. Marseille 44, 155–189 (1970).

    Google Scholar 

  13. Davis, M. B. Ecology 50, 409–421 (1969).

    Article  CAS  Google Scholar 

  14. Griffiths, M. & Edmondson, W. T. Limnol. Oceanogr. 20, 945–952 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Lehman, J. T. Quat. Res. 5, 541–550 (1975).

    Article  Google Scholar 

  16. Davis, R. B. & Anderson, D. S. Hydrobiologia 120, 69–87 (1985).

    Article  CAS  Google Scholar 

  17. Moritz, C. Hydrobiologia 145, 309–314 (1987).

    Article  Google Scholar 

  18. Davis, R. B. Limnol. Oceanogr. 19, 342–346 (1974).

    Article  ADS  Google Scholar 

  19. Likens, G. E. & Davis, M. B. Verh. int. Verein. theor. angew. Limnol. 19, 982–993 (1975).

    Google Scholar 

  20. von Ende, C. N. Ecology 60, 119–128 (1979).

    Article  Google Scholar 

  21. Fedorenko, A. Y. Limnol. Oceanogr. 20, 250–258 (1975).

    Article  ADS  Google Scholar 

  22. Pastorok, R. A. in Evolution and Ecology of Zooplankton Communities (ed. Kerfoot, W. C.) 538–554 (University Press New England, Hanover, New Hampshire, 1980).

    Google Scholar 

  23. Walton, W. E. J. Plank, Res. 10, 110–114 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hairston Jr, N., De Stasio Jr, B. Rate of evolution slowed by a dormant propagule pool. Nature 336, 239–242 (1988). https://doi.org/10.1038/336239a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336239a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing