Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Thursday 25 May 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 332, 810 - 812 (28 April 1988); doi:10.1038/332810a0

Solar luminosity variations in solar cycle 21

Richard C. Willson* & H. S. Hudson

*Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
Center for Astrophysics and Space Science, University of California at San Diego, La Jolla, California 92093, USA

The ACRIM I experiment (Active Cavity Radiometer Irradiance Monitor) on the solar maximum Mission (SMM) satellite has provided a nearly continuous record of solar total irradiance variations since early 19801. It has detected variations on time scales ranging from minutes to SMM's lifetime. The long-term variations have revealed a downward trend during the declining phase of solar cycle 21 (ref. 2) of the sunspot cycle, a flat period between mid-1985 and mid-1987, and an upturn in late 1987 which suggests a direct correlation of luminosity and solar active region population. If the upturn continues into the activity maximum of solar cycle 22, a relation between solar activity and luminosity of possible climatological significance could have been discovered. The sense of the correlation agrees with what has been predicted from the coincidence of the 'little ice age' climate anomaly in the sixteenth and seventeenth centuries and the Maunder Minimum of solar activity3. The best-fit relationship for the variation of total irradiance S, with sunspot number R z, and 10–cm flux F10, are S=1,366.82+7.7l×10−3 R z and S=1,366.27+8.98×10−3 F10 (W m−2). These could be used to approximate total irradiance variations over the periods for which these indices have been compiled.



1. Willson, R. C. Space Sci. Rev. 38, 203−242 (1984).
2. Willson, R. C., Hudson, H. S., Frohlich, C. & Brusa, R. W. Science 234, 1114−1117 (1986).
3. Eddy, J. A. Climate Change 1, 173−190 (1977).
4. J. R. Hickey in Advances in Absolute Radiometry (ed. Foukal, P. V.) 30−33 (AER, Cambridge, MA, 1985).
5. Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S. & Chapman, G. A. Science 211, 700−702 (1981). | ISI |
6. Willson, R. C. J. geophys. Res. 86, 4319−4326 (1982).
7. Oster, L. F., Schatten, K. H. & Sofia, S. Astrophys. J. 256, 768−772 (1982). | Article | ISI |
8. Sofia, S., Oster, L. & Schatten, K. Solar Phys. 80, 87−89 (1982). | Article | ISI |
9. Chapman, G. A. in Solar Irradiance Variations on Active Region Time Scales (eds La Bonte, Chapman, Hudson & Willson) 73−89 (NASA, Washington, 1983).
10. Hirayama, T., Okamoto, T. & Hudson, H. S. ibid 43−58.
11. Hudson, H. S. & Willson, R. C. in The Physics of Sunspots (eds Cram, L. & Thomas, J.) 434−435 (Sacramento Peak Observatory, New Mexico, 1981).
12. Lean, J. L. et al. J. Geophys. Res. 87, 10307−10317 (1982).
13. Foukal, P. & Lean, J. Astrophys. J. (in the press).

© 1988 Nature Publishing Group
Privacy Policy