Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The spin histories of PSR1821 –24 in M28 and PSR1951 + 32 in CTB80

Abstract

A popular interpretation of the period versus period derivative distribution of the majority of radio pulsars is that the underlying neutron stars are born rapidly spinning, with surface magnetic fields of 1012–1013 G that decay exponentially on a timescale of 106–107 yr (ref. 1). A new class of radio pulsing neutron stars with rapid rotation periods, <11ms, but low magnetic fields, 108–1010 G, may have been spun-up (recycled) by the accretion of material from a binary companion2–7. Compelling support for this comes from the fact that in several cases the pulsar is in a binary system with a degenerate companion, the burnt-out remains of the mass donor6–8. In those cases where the pulsar is single, it seems likely that the binary orbit has been disrupted. The rotation period of the recently discovered 3.05-ms pulsar PSR1821–24 in the globular cluster M28 (ref. 9) appears to violate the minimum possible from spin-up by accretion, for the inferred magnetic fied strength of 2.3 x 109 G (ref. 10). In addition, the inferred magnetic field strength of 5x1011G of PSR1951+32, in the supernova remnant CTB80 (ref. 11), is low when compared to the spin-down age of 105yr (ref. 12), suggesting perhaps that not all neutron stars are born with magnetic fields >1012G. We point out here that these apparent contradictions arise because the derivation of the previously used spin-up limit does not take into account the domination of the inner accretion disk by radiation pressure. The correct relation depends on the underlying assumptions about the viscosity in the inner disk and how the accretion disk interacts with the magnetosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lyne, A. G., Manchester, R. N. & Taylor, J. H. Mon. Not. R. Astr. Soc. 213, 613–639 (1985).

    Article  ADS  Google Scholar 

  2. Backer, D. C., Kulkarni, S. R., Heiles, C., Davies, M. M. & Goss, W. M. Nature 300, 615–618 (1983).

    Article  ADS  Google Scholar 

  3. Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. Nature 300, 728–731 (1983).

    Article  ADS  Google Scholar 

  4. Boriakoff, V., Buccheri, R. & Fauci, F. Nature 304, 417–419 (1983).

    Article  ADS  Google Scholar 

  5. Joss, P. C. & Rappaport, S. A. Nature 304, 419–421 (1983).

    Article  ADS  Google Scholar 

  6. Taylor, J. H. in IAU 125: The Origin and Evolution of Neutron Stars (eds Helfand, D. J. & Huang, J. H.) 383–392 (Reidel, Dordrecht, 1986).

    Google Scholar 

  7. van den Heuvel, E. P. J. in IAU Symp. 125: The Origin and Evolution of Neutron Stars (eds Helfand, D. J. & Huang, J. H.) 393–406 (Reidel, Dordrecht, 1986).

    Google Scholar 

  8. Kulkarni, S. R. Astrophys. J. 306, L85–L89 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Lyne, A. G. et al. Nature 328, 399–401 (1987).

    Article  ADS  Google Scholar 

  10. Foster, R. S., Backer, D. C., Taylor, J. H. & Goss, W. M. Astrophys. J. (in the press).

  11. Kulkarni, S. R. et al. Nature 331, 50–53 (1988).

    Article  ADS  Google Scholar 

  12. Fruchter, A. S. et al. Nature 331, 53–54 (1988).

    Article  ADS  Google Scholar 

  13. Ghosh, P. & Lamb, F. K. Astrophys. J. 234, 296–316 (1979).

    Article  ADS  Google Scholar 

  14. White, N. E. & Stella, L. Mon. Not. R. Astr. Soc. (in the press).

  15. Shakura, N. I. & Sunyaev, R. A. Astr. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  16. Meyer, F. & Meyer-Hofmeister, E. Astr. Astrophys. 106, 34–45 (1982).

    ADS  Google Scholar 

  17. Shakura, N. I. & Sunyaev, R. A. Mon. Not. R. Astr. Soc. 175, 613–632 (1976).

    Article  ADS  Google Scholar 

  18. Stella, L. & Rosner, R. Astrophys. J. 277, 312–321 (1984).

    Article  ADS  Google Scholar 

  19. Vasyliunas, V. M. Space Sci. Rev. 24, 609–634 (1979).

    Article  ADS  Google Scholar 

  20. Scharlemann, E. T. Astrophys. J. 219, 617–628 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Manchester, R. N. & Taylor, J. H. Astr. J. 86, 1953–1973 (1981).

    Article  ADS  Google Scholar 

  22. Verbunt, F., van den Heuvel, E. P. J., van Paradijs, J. & Rappaport, S. A. Nature 329, 312–314 (1987).

    Article  ADS  Google Scholar 

  23. Verbunt, F. in COSPAR/IAU Symp: The Physics of Compact Objects—Theory vs. Observation (eds N. E. White & L. Filipov) (Pergamon, Oxford, in the press).

  24. Bonsema, P. F. J. & van den Heuvel, E. P. J. Astr. Aslrophys. 146, L3–L5 (1985).

    ADS  CAS  Google Scholar 

  25. Skinner, G. K. et al. Nature 297, 568–570 (1982).

    Article  ADS  Google Scholar 

  26. Charles, P. A. et al. Mon. Not. R. Astr. Soc. 202, 657–682 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Stella, L., White, N. E. & Rosner, R. Astrophys. J. 308, 669–679 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Habets, G. M. H. J. Astr. Astrophys. 184, 209–214 (1987).

    ADS  Google Scholar 

  29. Wang, Z. R. & Seward, F. D. Astrophys. J. 285, 607–612 (1984).

    Article  ADS  Google Scholar 

  30. Angerhofer, P. E., Strom, R. G., Velusamy, T. & Kundu, M. R. Astr. Astrophys. 94, 313–322 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, N., Stella, L. The spin histories of PSR1821 –24 in M28 and PSR1951 + 32 in CTB80. Nature 332, 416–418 (1988). https://doi.org/10.1038/332416a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332416a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing