Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Numerical simulation of Jupiter's Great Red Spot

Abstract

Jupiter's Great Red Spot is viewed as a vortex that arises naturally from the equations of motion of the jovian atmosphere. Here I solve numerically the equations governing fluid motion in a model of the jovian atmosphere for a variety of initial conditions. Large spots of vorticity form spontaneously in chaotic azimuthal flows and are stable if the vorticity of the spots has the same sign as the shear of the surrounding azimuthal flow. The Great Red Spot is compared with these solutions and a new prediction of its vertical structure is made.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ingersoll, A. P. & Cuong, P. G. J. atmos. Sci. 38, 2067–2076 (1981).

    Article  ADS  Google Scholar 

  2. Pedlosky, J. Geophysical Fluid Dynamics (Springer, New York, 1979).

    Book  Google Scholar 

  3. Conrath, B. J., Flasar, F. M., Pirraglia, J. A., Gierasch, P. J. Hunt, G. E. J. geophys. Res. 86, 8769–8775 (1981).

    Article  ADS  Google Scholar 

  4. Limaye, S. S. Icarus 65, 335–352 (1986).

    Article  ADS  Google Scholar 

  5. Marcus, P. S. in Numerical Analysis (eds Griffiths, D. F. & Watson, G. A.) 125–139 (Longman Scientific and Technical, Harlow, 1986).

    Google Scholar 

  6. Sommeria, J., Meyers, S. D., Swinney, H. L. Nature 331, 689–693 (1988).

    Article  ADS  Google Scholar 

  7. Rhines, P. B. & Young, W. R. J. Fluid Mech 122, 347–367 (1982).

    Article  ADS  Google Scholar 

  8. Williams, G. P. J. atmos. Sci. 36, 932–968 (1979).

    Article  ADS  Google Scholar 

  9. Marcus, P. S. J. Fluid Mech. (submitted).

  10. Low, M.-M., M. & Ingersoll, A. P. Icarus 65, 353–369 (1986).

    Article  ADS  Google Scholar 

  11. Beebe, R. F. & Hockey, T. A. Icarus 67, 96–105 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Mitchell, J. L., Beebe, R. F., Ingersoll, A. P. & Garneau, G. W. J. geophys. Res. 86, 8751–8757 (1981).

    Article  ADS  Google Scholar 

  13. Smith, B. A. & Hunt, G. E. in Jupiter (ed. Gehrels, T.) 564–585 (University of Arizona Press, Tuscon, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, P. Numerical simulation of Jupiter's Great Red Spot. Nature 331, 693–696 (1988). https://doi.org/10.1038/331693a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331693a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing