Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A galactic gravitational lens as the ultimate astronomical telescope

Abstract

When a galaxy acts as a gravitational lens it behaves more like a raindrop deflecting sunlight than like a true lens. The images formed by a galaxy exist as directions of incidence of rays on the observer and the best a galaxy can do is to generate complex surfaces called caustics1–4. Here we point out that the caustic surfaces of galactic lenses are powerful telescopes, with point-source intensifications varying with frequency from 105 for radio waves to 108 for X rays. The diffraction limit to the angular resolution varies from 10–11 to 10–17 arcs from radio waves to X rays and exceeds the resolution of man-made telescopes by many orders of magnitude. The signature of a point source crossing the caustic is a burst of radiation modulated in time by a characteristic diffraction pattern. The microcaustic surfaces generated by stars in the lensing galaxy are also powerful telescopes that yield large intensifications of small sources crossing the microcaustic. Decaying cosmic strings could be an important source of cosmic rays with energies above 1010 GeV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Bourassa, R. R. & Kantowski R. Astrophys. J. 195, 13-21 (1975). 2. Young, P., Gunn, J. E., Kristian, J., Oke, J. B. & Westphal, J. A. Astrophys. J. 241, 507-520 (1980). 3. Ohanian, H. C. Astrophys. J. 271, 551-555 (1983). 4. Blandford, R. & Narayan, R. Astrophys. J. 310, 568-582 (1986). 5. Benson, J. R. & Cooke, J. H. Astrophys. J. 227, 360-363 (1979). 6. Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields (Pergamon, Oxford, 1975). 7. Ingel, L. Kp. & Rubakha, N. R. Astr. Zh. 52, 1049-1054 (1975); Soviet Astr. 19, 633-636 (1976). 8. Bontz, R. J. and Haugan, M. P. Astrophys. Space Sci. 78, 199-210 (1981). 9. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions, (Dover, New York,1965). 10. Bartel, N., Herring, T. A., Ratner, M. L, Shapiro, I. I. & Corey, B. E. Nature 319, 733-738 (1986). 11.Berry, M. V. & Upstiii, C. Progress in Optics Vol. 18 (ed. Wolf, E.) 257-346 (North-Holland, Amsterdam, 1980). 12. Turner, E. L., Ostriker, J. P. & Gott, J. R. Ill Astrophys. J. 284, 1-22 (1984). 13. Tyson, J. A. Astrophys. J. 272, L41-L44 (1983). 14. Schmidt, M. & Green, R. F. Astrophys. J. 269, 352-374 (1985). 15. Lynden-Bell, D. Phys. Scripta 17, 185-191 (1978). 16. Trimble, V. & Woltjer, L. Science 234, 155-161 (1986). 17. Chang, K. & Refsdal, S. Nature 282, 561-564 (1979). 18. Chang, K. & Refsdal, S. Astr. Astrophys. 132, 168-178 (1984). 19. Young, P. Astrophys. J. 244, 756-767 (1981). 20. Gott, J. R. Ill, Astrophys. J. 243, 140-146 (1981). 21. Canizares, C. R. Nature 291, 620-624 (1981). 22. Kayser, R., Refsdal, S. & Stabell, R. Astr. Astrophys. 166, 36-52 (1986). 23. Paczynski, B. Astrophys. J. 301, 503-516 (1986). 24. Schneider, P. & Weiss, A. Astr. Astrophys. 171, 49-65 (1987). 25. Peacock, H. A. Proc. 24th Liege int. Astrophys. Coll. 86-104 (Institute for Astrophysics, University of Liege, 1983). 26. Bontz, R. J. Astrophys. J. 233, 402-410 (1979). 27. Dyer, C. C. & Roeder, R. C. Astrophys. J. 249, 290-296 (1981). 28. Schneider, P. & Schmidt-Burgk, J. Astr. Astrophys. 148, 369-378 (1985). 29. Deguchi, S. & Watson, W. D. Astrophys. J. 307, 30-37 (1986). 30. Hogan, C. & Narayan, R. Mon. Not. R. astr. Soc. 211, 575-591 (1984). 31. Vilenkin, A. Phys. Rep. 121, 263-315 (1985). 32. Kibble, T. W. B. Nucl. Phys. B252, 227-244 (1985). 33. Hogan, C. J. & Rees, M. J. Nature 311, 109-114 (1984). 34. Watson, A. A. Q. Jl R. astr. Soc. 21, 1-13 (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBreen, B., Metcalfe, L. A galactic gravitational lens as the ultimate astronomical telescope. Nature 330, 348–350 (1987). https://doi.org/10.1038/330348a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/330348a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing