Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p53 and DNA polymerase α compete for binding to SV40 T antigen

Abstract

The large T antigen (T) of simian virus 40 is a multifunctional protein required for both viral DNA replication and cellular transformation1. T antigen forms specific protein complexes with the host protein p53 in both virus-infected and transformed cells2–4. p53 has recently been shown to be an oncogene5–7, but its normal function is not clear. We previously established a radioim-munoassay8 to study the newly described complex between T antigen and DNA polymerase α, and have noted a similarity between the antigenic changes induced in T by the binding of both p53 and polymerase9,10. We now extend this analysis to a larger collection of anti-T antibodies and formally establish that p53 and DNA polymerase α can compete for binding to the SV40 T antigen. At a critical concentration of the three components it is possible to detect a trimeric complex of T, p53 and DNA polymerase α. Our observations have important implications for the control by these nuclear oncogenes of viral and cellular DNA synthesis and viral host range in both normal and transformed cells. We present a model for the action of p53 in growth control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rigby, P. W. J. & Lane, D. P. in Advances in Viral Oncology Vol. 3 (ed. Klein, G.) 31–57 (Raven, 1983).

    Google Scholar 

  2. Lane, D. P. & Crawford, L. V. Nature 278, 261–263 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. McCormick, P. & Harlow, E. J. Virol. 34, 213–224 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Harlow, E., Pim, D. C. & Crawford, L. V. J. Virol. 37, 564–573 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eliyahu, D., Raz, A., Gruss, P., Givol, D. & Oren, M. Nature 312, 646–649 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jenkins, J. R., Rudge, K. & Currie, G. A. Nature 312, 651–654 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Parada, L. F., Land, H., Weinberg, R. A., Wolf, D. & Rotter, V. Nature 312, 649–651 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Smale, S. T. & Tjian, R. Molec. cell. Biol. 6, 4077–4087 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mole, S. E., Gannon, J. V., Ford, M. J. & Lane, D. P. Proc. R. Soc. B (in the press).

  10. Lane, D. P. & Gannon, J. V. in Cancer Cells Vol. 4 (eds Botchan, M., Grodzicker, T. & Sharp, P. A.) 387–393 (Cold Spring Harbor, New York, 1986).

    Google Scholar 

  11. Tanaka, S., Hu, S., Wang, T. & Korn, D. J. biol. Chem. 257, 8386–8390 (1982).

    CAS  PubMed  Google Scholar 

  12. Stillman, B. W. & Gluzman, Y. Molec. cell. Biol. 5, 2051–2060 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stillman, B. W., Diffley, J. F. X., Prelich, G. & Guggenheimer, R. A. in Cancer Cells Vol. 4 (eds Botchan, M., Grodzicker, T. & Sharp, P. A.) 453–463 (Cold Spring Harbor, New York, 1986).

    Google Scholar 

  14. Simanis, V. & Lane, D. P. Virology 144, 88–100 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Ottiger, H., Frei, P., Hassig, M. & Hubscher, U. Nucleic Acids Res. 15, 4789–4807 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lane, D. P., Gannon, J. & Winchester, G. Adv. viral Oncol. 2, 23–39 (1982).

    CAS  Google Scholar 

  17. Reich, N. C. & Levine, A. J. Nature 308, 199–201 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Harlow, E., Crawford, L. V., Pim, D. C. & Williamson, N. M. J. Virol. 39, 861–869 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Benchimol, S., Pim, D. & Crawford, L. V. EMBO J. 1, 1055–1062 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yewdell, J. W., Gannon, J. V. & Lane, D. P. J. Virol. 59, 444–452 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rotter, V., Boss, M. A. & Baltimore, D. J. Virol. 38, 336–346 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dippold, W. G., Jay, G., DeLeo, A. B., Khoury, G. & Old, L. J. Proc. natn. Acad. Sci. U.S.A. 78, 1695–1699 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gannon, J., Lane, D. p53 and DNA polymerase α compete for binding to SV40 T antigen. Nature 329, 456–458 (1987). https://doi.org/10.1038/329456a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329456a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing