Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloud optical depth feedbacks and climate modelling

Abstract

Recent general circulation model studies1–3 performed to assess the equilibrium climate response to doubling atmospheric CO2 suggested a global mean surface warming of 3.5–4.2 °C. Part of this warming was attributed to a change in cloud cover1. But all of these studies neglected changes of cloud optical properties which were shown to provide a substantial negative feedback in radiative-convective models if the cloud liquid water content was assumed to increase with increasing temperature4,5. This hypothesis is examined in a climate model where clouds are simulated interactively with dynamics, radiation and hydrological cycle6. The thermal forcing is introduced by a 2% increase of the solar constant which is equivalent to a doubling of CO21. The results show the anticipated increase of cloud liquid water and cloud optical depth. A feedback analysis of the simulated climate change supports earlier suggestions of the importance of cloud optical depth feedbacks4,5. The net effect of clouds is to provide a negative feedback on surface temperature, rather than the positive feedback found in earlier general circulation model studies without considering cloud optical depth feedbacks1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hansen, J. E. et al. Geophys. Monogr. 29, 130–163 (1984).

    Google Scholar 

  2. Washington, W. M. & Meehl, G. A. J. geophys. Res. 89, 9475–9503 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Wetherald, R. T. & Manabe, S. Clim. Change 8, 5–23 (1986).

    Article  ADS  Google Scholar 

  4. Charlock, T. P. Tellus 34, 245–254 (1982).

    Article  ADS  Google Scholar 

  5. Somerville, R. C. J. & Remer, L. A. J. geophys. Res. 89, 9668–9672 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Roeckner, E. & Schlese, U. Proc. ECMWF Workshop on Cloud Cover Parameterization in Numerical Models, Reading, UK, 87–108 (European Centre for Medium Range Weather Forecasts, 1985).

    Google Scholar 

  7. Hense, A. et al. Q. Jl R. met. Soc. 108, 231–252 (1982).

    Article  ADS  Google Scholar 

  8. Sundqvist, H. Q. Jl R. met Soc. 104, 677–690 (1978).

    Article  ADS  Google Scholar 

  9. Braham, R. R. Jr Bull Am. met. Soc. 49, 343–353 (1968).

    Article  Google Scholar 

  10. Stephens, G. L. J. atmos. Sci 35, 2123–2132 (1978).

    Article  ADS  Google Scholar 

  11. Pollard, D. et al. J. phys. Oceanogr. 13, 754–768 (1983).

    Article  ADS  Google Scholar 

  12. Schlesinger, M. E. Adv. Geophys. 26, 141–235 (1984).

    Article  ADS  Google Scholar 

  13. Feigelson, E. M. Beitr. Phys. Atmos. 51, 203–229 (1978).

    CAS  Google Scholar 

  14. Wetherald, R. T. & Manabe, S. J. atmos. Sci. 37, 1485–1510 (1980).

    Article  ADS  Google Scholar 

  15. Ohring, G. & Gruber, A. Adv. Geophys. 25, 237–304 (1983).

    Article  ADS  Google Scholar 

  16. Oort, A. H. NOAA Prof. Paper No. 14 (1983).

  17. Jaeger, L. Ber. Deut. Wetterdienstes, Offenbach 139, 1–38 (1976).

    Google Scholar 

  18. Stephens, G. L. et al. J. geophys. Res. 86, 9739–9760 (1981).

    Article  ADS  Google Scholar 

  19. Walsh, J. E. & Johnson, C. M. J. phys. Oceanogr. 9, 580–590 (1979).

    Article  ADS  Google Scholar 

  20. Zwally, H. J. et al. Science 220, 1005–1012 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeckner, E., Schlese, U., Biercamp, J. et al. Cloud optical depth feedbacks and climate modelling. Nature 329, 138–140 (1987). https://doi.org/10.1038/329138a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329138a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing