Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA conformation is determined by economics in the hydration of phosphate groups

Abstract

Mixed sequence DNA can exist in two right-handed and one left-handed double helical conformations—A, B and Z1–3. Under conditions of high water activity the B conformation prevails. If the water activity is reduced on addition of salt or organic solvents, transformation occurs to A-DNA or, in DNAs with alternating purine-pyrimidine sequences, to the left-handed Z-DNA. In crystal structure analyses of oligonucleotides, the free oxygen atoms of adjacent phosphate groups along the polynucleotide chain in B-DNA are found at least 6.6 Å apart and individually hydrated4 whereas they are as close as 5.3 Å in A-DNA and 4.4 Å in Z-DNA, and bridged by water molecules5–7. We suggest that this more economical hydration in A- and Z-DNA compared with B-DNA is the underlying cause of B → A and B → Z transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Saenger, W. in Principles of Nucleic Acid Structure, 220–297 (Springer, New York, 1983).

    Google Scholar 

  2. Dickerson, R. E. et al. Science 216, 475–485 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Jurnak, F. A. & McPherson, A. (eds) Biological Macromolecules and Assemblies Vol. 2: Nucleic Acids & Interactive Proteins (Wiley, New York, 1985).

    Google Scholar 

  4. Kopka, M. L., Fratini, A. V., Drew, H. R. & Dickerson, R. E. J. molec. Biol. 163, 129–146 (1983).

    Article  CAS  Google Scholar 

  5. Kennard, O. et al. J. biomolec. struct. Dyn. 3, 205–225 (1986).

    Article  Google Scholar 

  6. Westhof, E., Prangé, Th. Chevrier, B. & Moras, D. Biochimie 67, 811–817 (1985).

    Article  CAS  Google Scholar 

  7. Chevrier, B. et al. J. molec. Biol. 188, 707–719 (1986).

    Article  CAS  Google Scholar 

  8. Wang, A. H.-J., Hakoshima, T., van der Marel, G., van Boom, J. H. & Rich, A. Cell 37, 321–331 (1984).

    Article  CAS  Google Scholar 

  9. Quigley, G. J. in Molecular Structure and Biological Activity (eds Griffin, J. & Duax, W. L.) 317–332 (Elsevier, New York, 1981).

    Google Scholar 

  10. Brown, T., Hunter, W. N., Kneale, G. & Kennard, O. Proc. natn. Acad. Sci. U.S.A. 83, 2402–2406 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Dickerson, R. E. & Drew, H. R. J. molec. Biol. 149, 761–786 (1981).

    Article  CAS  Google Scholar 

  12. Kennard, O. J. molec. struct. Dyn. 3, 205–225 (1985).

    Article  CAS  Google Scholar 

  13. Hunter, W. N., Brown, T., Anand, N. N. & Kennard, O. Nature 320, 552–555 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Arnott, S. & Selsing, E. J molec. Biol. 88, 509–521 (1974).

    Article  CAS  Google Scholar 

  15. Wang, A. H.-J. et al. Science 211, 171–176 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Altona, C. & Sundaralingam, M. J. Am. chem. Soc. 94, 8205–8212 (1972).

    Article  CAS  Google Scholar 

  17. Falk, M., Hartmann, K. A. Jr & Lord, R. C. J. Am. chem. Soc. 84, 3843–3846 (1962).

    Article  CAS  Google Scholar 

  18. Falk, M., Hartmann, K. A. Jr & Lord, R. C. J. Am. chem. Soc. 85, 387–391 (1963).

    Article  CAS  Google Scholar 

  19. Jeffrey, G. A., Maluszynska, M. & Mitra, J. Int. J. biol. Macromol. 7, 336–347 (1985).

    Article  CAS  Google Scholar 

  20. Gessner, R. V. et al. Biochemistry 24, 237–240 (1985).

    Article  CAS  Google Scholar 

  21. Tunis, M.-J .B. & Hearst, J. E. Biopolymers 6, 1345–1353 (1968).

    Article  CAS  Google Scholar 

  22. Goldblum, A., Perahia, D. & Pullman, A. FEBS Lett. 91, 213–315 (1978).

    Article  CAS  Google Scholar 

  23. Drew, H. R. & Dickerson, R. E. J. molec. Biol. 151, 535–556 (1981).

    Article  CAS  Google Scholar 

  24. McCall, M., Brown, T. & Kennard, O. J. molec. Biol. 183, 385–396 (1985).

    Article  CAS  Google Scholar 

  25. Kneale, G., Brown, T., Kennard, O. & Rabinovich, D. J. molec. Biol. 186, 805–814 (1985).

    Article  CAS  Google Scholar 

  26. Hunter, W. N., Kneale, G., Brown, T., Rabinovich, D. & Kennard, O. J. molec. Biol. (in the press).

  27. Conner, B. N., Yoon, C., Dickerson, J. L. & Dickerson, R. E. J. molec. Biol. 174, 663–695 (1984).

    Article  CAS  Google Scholar 

  28. Brown, T., Kneale, G., Hunter, W. N. & Kennard, O., Nucleic Acids Res., 14, 1801–1809 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saenger, W., Hunter, W. & Kennard, O. DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324, 385–388 (1986). https://doi.org/10.1038/324385a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324385a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing