Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acoustic cavitation generated by microsecond pulses of ultrasound

Abstract

Under extreme acoustic stress, liquids can be caused to rupture, with the transient generation of a vapour cavity. The subsequent collapse of these cavities is normally violent enough to be observed with the unaided eye or ear, and often generates free radicals due to the high temperatures and pressures associated with the collapse. Flynn1 has calculated that microsecond pulses of ultrasound with peak intensities in the range 10–30 W cm−2 can generate transient cavitation in water. Because some diagnostic ultrasound systems2,3 now in clinical use generate microsecond length pulses with temporal peak intensities >100 W cm−2, there is reason to believe that this mechanism could operate in diagnostic conditions in aqueous media. We show here that ultrasonic pulses as short as one cycle at a frequency of 1.0 MHz give rise to luminescence flashes characteristic of violent cavitation. This provides the first experimental confirmation of Flynn's theoretical calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Flynn, H. G. J. acoust. Soc. Am. 72, 1926–1931 (1982).

    Article  ADS  Google Scholar 

  2. Carstensen, E. L. & Flynn, H. G. Ultrasound Med. Biol. 8, 1720–1723 (1982).

    Article  Google Scholar 

  3. Kremkau, F. W. Clinics Obstet. Gyn. 10, 395–401 (1983).

    CAS  Google Scholar 

  4. Roy, R. A., Atchley, A. A., Crum, L. A., Fowlkes, J. B. & Reidy, J. J. J. acoust. Soc. Am. (in the press).

  5. Carstensen, E. L., Parker, K. J. & Barbee, D. B. J. acoust. Soc. Am. 74, 1057–1061 (1983).

    Article  ADS  Google Scholar 

  6. Marston, P. L. & Unger, R. T. Shock Waves in Condensed Matter (Plenum, New York, in the press).

  7. Jarman, P. J. acoust. Soc. Am. 32, 1459–1464 (1960).

    Article  ADS  Google Scholar 

  8. Walton, A. J. & Reynolds, G. T. Adv. Phys. 33, 595–660 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Sehgal, C., Sutherland, R. G. & Verrall, R. E. J. phys. Chem. 84, 396–398 (1980).

    Article  CAS  Google Scholar 

  10. Finch, R. D. Ultrasonics 1, 87–95 (1964).

    Article  Google Scholar 

  11. White, E. H. & Roswele, D. F. Accts. chem. Res. 3, 54–61 (1970).

    Article  CAS  Google Scholar 

  12. Burdo, E. G. & Seitz, W. R. Analyt. Chem. 47, 1643–1648 (1975).

    Google Scholar 

  13. Crum, L. A. & Reynolds, G. T. J. acoust. Soc. Am. 78, 137–139 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Crum, L. A. Appl. Sci. Res. 38, 101–111 (1982).

    Article  CAS  Google Scholar 

  15. Evans, A. & Walder, D. N. Nature 222, 251–254 (1969).

    Article  ADS  CAS  Google Scholar 

  16. McDonough, P. M. & Hemmingsen, E. A. J. appl. Physiol. 56, 513–521 (1984).

    Article  CAS  Google Scholar 

  17. ter Haar, G. R. & Daniels, S. Phys. Med. Biol. 26, 1145–1150 (1981).

    Article  CAS  Google Scholar 

  18. Berg, K. B., Child, S. Z. & Carstensen, E. L. Ultrasound Med. Biol. 9, 1448–1453 (1983).

    Article  Google Scholar 

  19. Sommer, F. G. & Pounds, D. Med. Phys. 9, 1–11 (1982).

    Article  CAS  Google Scholar 

  20. Williams, A. R. & Miller, D. L. Ultrasound Med. Biol. 6, 251–260 (1980).

    Article  CAS  Google Scholar 

  21. Dyson, M. & Suckling, J. Physiotherapy. 64, 105–111 (1978).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crum, L., Fowlkes, J. Acoustic cavitation generated by microsecond pulses of ultrasound. Nature 319, 52–54 (1986). https://doi.org/10.1038/319052a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319052a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing