Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Course correction circuitry translates feature detection into behavioural action in locusts

Abstract

Like other flying animals, locusts must maintain course stability despite turbulence and motor errors. Accordingly, they must detect course deviations and then correct them. The compound eyes, the ocelli and the cephalic wind hairs all detect different sensory consequences of flight instability1–3,and descending interneurones bring this information to the thorax4–9. One such interneurone of this population (the tritocerebral commissure giant neurone) is known to elicit correctional steering10.Here we characterize three additional pairs of descending deviation detector neurones and show how their information is translated into altered drive to the flight motoneurones. The central pattern generator for flight11–13,modulated by proprioceptive feedback14, gates the signal of the detector neurones in thoracic premotor interneurones9,ensuring that the flight motoneurones are affected only during flight. Further, the gating process transforms the phase-independent information of the deviation detectors into a phase-dependent signal modulated at wing-beat frequency, and transfers it to those flight motoneurones active at the time and appropriate to the corrective action required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weis-Fogh, T. Nature 163, 873–874 (1949).

    Article  ADS  Google Scholar 

  2. Goodman, L. J. J. exp. Biol. 42, 385–408 (1965).

    Google Scholar 

  3. Taylor, C. P. J. exp. Biol. 93, 1–18 (1981).

    Google Scholar 

  4. Camhi, J. M. J. exp. Biol. 50, 349–369 (1969).

    CAS  PubMed  Google Scholar 

  5. Kien, J. Vision Res. 14, 1255–1268 (1974).

    Article  CAS  Google Scholar 

  6. Guy, R. et al. J. comp. Physiol. 115, 337–350 (1977).

    Article  Google Scholar 

  7. Bacon, J. & Tyrer, M. J. comp. Physiol. 126, 317–325 (1978).

    Article  Google Scholar 

  8. Simmons, P. J. exp. Biol. 85, 281–294 (1980).

    Google Scholar 

  9. Rowell, C. H. F. & Pearson, K. G. J. exp. Biol. 103, 265–288 (1983).

    Google Scholar 

  10. Möhl, B. & Bacon, J. J. comp. Physiol. 150, 453–466 (1983).

    Article  Google Scholar 

  11. Wilson, D. M. J. exp. Biol. 38, 471–490 (1961).

    Google Scholar 

  12. Robertson, R. M. & Pearson, K. G. J. comp. Physiol. 146, 311–320 (1982).

    Article  Google Scholar 

  13. Robertson, R. M. & Pearson, K. G. J. comp. Neurol. 215, 33–50 (1983).

    Article  CAS  Google Scholar 

  14. Wendler, G. in Symp. Physiol. Biophys. Insect Flight Vol. 2 (ed. Nachtigall, W.) 113–125 (Fischer, Stuttgart, 1983).

    Google Scholar 

  15. Wilson, M. J. comp. Physiol. 124, 297–316 (1978).

    Article  ADS  Google Scholar 

  16. Reichert, H. & Rowell, C. H. F. J. Neurophysiol. (in the press).

  17. Zarnack, W. & Möhl, B. J. comp. Physiol. 118, 215–233 (1977).

    Article  Google Scholar 

  18. Taylor, C. P. J. exp. Biol. 93, 19–31 (1981).

    Google Scholar 

  19. Wilson, D. M. J. exp. Biol. 48, 631–641 (1968).

    CAS  PubMed  Google Scholar 

  20. Waldron, I. J. exp. Biol. 47, 213–228 (1967).

    CAS  PubMed  Google Scholar 

  21. Burrows, M. & Horridge, G. A. Phil. Trans. R. Soc. B269, 49–94 (1974).

    Article  CAS  Google Scholar 

  22. Goodman, L. J. J. exp. Biol. 42, 385–408 (1964).

    Google Scholar 

  23. Camhi, J. M. J. exp. Biol. 52, 519–532 (1970).

    Google Scholar 

  24. Gewecke, M. & Phillipson, J. Physiol. Ent. 3, 43–52 (1978).

    Article  Google Scholar 

  25. Shepherd, G. M. Neurobiology, 395–412 (Oxford University Press, 1983).

    Google Scholar 

  26. Forssberg, H., Grillner, S. & Rossignol, S. Brain Res. 85, 103–107 (1975).

    Article  CAS  Google Scholar 

  27. Grillner, S. Physiol. Rev. 55, 247–304 (1975).

    Article  CAS  Google Scholar 

  28. Williams, J. L. D. thesis, Univ. Wales (1972).

  29. Williams, J. L. D. J. Zool. 176, 67–86 (1975).

    Article  Google Scholar 

  30. Goodman, C. S. Cell Tissue Res. 175, 166–183 (1976).

    Article  Google Scholar 

  31. Goodman, L. J. in The Compound Eye and Vision in Insects (ed. Horridge, G. A.) 515–548 (Clarendon, Oxford, 1975).

    Google Scholar 

  32. Patterson, J. A. & Goodman, L. J. J. comp. Physiol. 95, 251–262 (1974).

    Article  Google Scholar 

  33. Goodman, L. J. et al. Cell Tissue Res. 157, 467–492 (1975).

    Article  CAS  Google Scholar 

  34. Simmons, P. J. J. comp. Physiol. 147, 401–414 (1981).

    Article  Google Scholar 

  35. Stewart, W. W. Cell 14, 741–759 (1978).

    Article  CAS  Google Scholar 

  36. Bacon, J. P. & Altman, J. S. Brain Res. 138, 359–363 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichert, H., Rowell, C. & Griss, C. Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315, 142–144 (1985). https://doi.org/10.1038/315142a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315142a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing