Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predictions for Uranus from a radiometric Bode's law

Abstract

The magnetospheres of three planets, Earth, Jupiter and Saturn, are sources of intense, nonthermal radio bursts. Recent studies1–3 have shown that the emissions from these sources undergo pronounced long-term intensity fluctuations that are caused by the solar wind interaction with the magnetosphere of each planet. Determinations by spacecraft of the low-frequency radio spectra and radiation beam geometry now permit a reliable assessment of the overall efficiency of the solar wind in stimulating these emissions. We find that earlier estimates4 of how magnetospheric radio output scales with the solar wind energy input must be greatly revised, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. This result has prompted our formulation a ‘radiometric Bode's law’ from which a planet's magnetic moment can be estimated from its radio emission output. (This terminology is by analogy with the ‘magnetic Bode's law’, sometimes called Blackett's law5.) Applying the radiometric scaling law to Uranus, we estimate the low-frequency radio power likely to be measured by the Voyager 2 spacecraft as it approaches this planet. We also show how measurements of the Uranus radio flux by Voyager 2, which will probably be made in early to mid-1985, can be used to estimate the planetary magnetic moment and solar wind stand-off distance before the in situ measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gallagher, D. L. & D'Angelo, N. Geophys. Res. Lett. 8, 1087–1089 (1981).

    Article  ADS  Google Scholar 

  2. Desch, M. D. & Barrow, C. H. J. geophys. Res. (in the press).

  3. Desch, M. D. & Rucker, H. O. J. geophys. Res. 88, 8999–9006 (1983).

    Article  ADS  Google Scholar 

  4. Kennel, C. F. & Maggs, J. E. Nature 261, 299–301 (1976).

    Article  ADS  Google Scholar 

  5. Blackett, P. M. S. Nature 159, 658–666 (1947).

    Article  ADS  CAS  Google Scholar 

  6. Kaiser, M. L., Desch, M. D. & Lecacheux, A. Nature 292, 731–733 (1981).

    Article  ADS  Google Scholar 

  7. Green, J. L., Gurnett, D. A. & Shawhan, S. D. J. geophys. Res. 82, 1825–1838 (1977).

    Article  ADS  Google Scholar 

  8. Alexander, J. K., Desch, M. D., Kaiser, M. L. & Thieman, J. R. J. geophys. Res. 84, 5167–5174 (1979).

    Article  ADS  Google Scholar 

  9. Kaiser, M. L. & Alexander, J. K. J. geophys. Res. 82, 3273–3280 (1977).

    Article  ADS  Google Scholar 

  10. Carr, T. D., Desch, M. D. & Alexander, J. K. in Physics of Jovian Magnetosphere (ed. Dessler, A. J.) 226 (Cambridge University Press, New York, (1983).

    Book  Google Scholar 

  11. Alexander, J. K., Carr, T. D., Thieman, J. R., Schauble, J. J. & Riddle, A. C. J. geophys. Res. 86, 8529–8545 (1981).

    Article  ADS  Google Scholar 

  12. Rees, M. H. Planet. Space Sci. 23, 1589–1596 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Kennel, C. F. Space Sci. Rev. 14, 511–533 (1973).

    Article  ADS  Google Scholar 

  14. Brown, L. W. Astrophys. J. Lett. 207, L209–L212 (1976).

    Article  ADS  Google Scholar 

  15. Kaiser, M. L. J. geophys. Res. 82, 1256–1260 (1977).

    Article  ADS  Google Scholar 

  16. Clarke, J. T. Astrophys. J. Lett. 263, L105–L109 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Durrance, S. & Moos, H. W. Nature 299, 428–429 (1982).

    Article  ADS  Google Scholar 

  18. Clarke, J. T. Proc. Yosemite Conf. (preprint 1984).

  19. Hill, T. W., Dessler, A. J. & Rassbach, M. E. Planet. Space Sci. 31, 1187–1198 (1983).

    Article  ADS  Google Scholar 

  20. Lang, G. J. & Peltzer, R. G. IEEE Trans. Aerospace. Electron. Syst. AES 13, 466–471 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desch, M., Kaiser, M. Predictions for Uranus from a radiometric Bode's law. Nature 310, 755–757 (1984). https://doi.org/10.1038/310755a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310755a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing