Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcription in oocytes of highly methylated rDNA from Xenopus laevis sperm

Abstract

The genes for ribosomal RNA exist as multiple copies in the genome. Each repeated unit comprises a region that codes for the 40S rRNA precursor, and a spacer region of uncertain function1,2 (Fig. 1a). In Xenopus laevis there are about 1,000 copies of the dinucleotide sequence C-G in each repeat unit, and of these about 250 can be tested for the presence of 5-methylcytosine using restriction endonucleases3,4. Most of the detectable C-Gs are heavily methylated, but in somatic cells unmethylated C-Gs occur5 in a 60 base pair (bp) sequence (NTS-60) that is repeated in the spacer6,7 In contrast, the spacer of sperm rDNA is heavily methylated at these and all other testable C-Gs. Loss of methylation at NTS-60 takes place during the first day of embryonic development, near the time when rDNA transcription begins4. In an attempt to assess the significance of this developmental change in methylation, we have isolated sperm rDNA and investigated whether it can be transcribed in oocytes. We have found that sperm rDNA is transcribed as efficiently as cloned rDNA, although no loss of methylation was detectable. Direct sequencing of sperm rDNA showed that all 19 C-Gs in the promoter are highly methylated. Thus, in the case of rDNA injected into oocytes, loss of methylation is unnecessary for effective transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewin, B. Gene Expression Vol. 2 p. 865 (Wiley, New York, 1980).

    Google Scholar 

  2. Long, E. & David. I. B. A. Rev. Biochem. 49, 727–764 (1980).

    Article  CAS  Google Scholar 

  3. Bird, A. P. & Southern, E. M. J. molec. Biol. 118, 27–47 (1978).

    Article  CAS  Google Scholar 

  4. Bird, A. P., Taggart, M. H. & Macleod, D. Cell 26, 381–390 (1981).

    Article  CAS  Google Scholar 

  5. La Volpe, A., Taggart, M. H., Macleod, D. & Bird, A. P. Cold Spring Harb. Symp. quant. Biol. 47, 585–592 (1982).

    Article  CAS  Google Scholar 

  6. Boseley, P. G., Moss, T., Machler, M., Portmann, R. & Birnstiel, M. L. Cell 17, 19–31 (1979).

    Article  CAS  Google Scholar 

  7. Sollner-Webb, B. & Reeder, R. H. Cell 18, 485–499 (1979).

    Article  CAS  Google Scholar 

  8. Birnstiel, M. L., Wallace, H., Sirlin, J. L & Fischberg, M. Natn. Cancer. Inst. Monogr. 23, 431–447 (1966).

    CAS  Google Scholar 

  9. Gruenbaum, Y., Stein, R., Cedar, H. & Razin, A. FEBS. Lett. 124, 67–71 (1981).

    Article  CAS  Google Scholar 

  10. Moss, T. Cell 30, 835–842 (1982).

    Article  CAS  Google Scholar 

  11. Sollner-Webb, B. & McKnight, S. L. Nucleic Acids Res. 10, 3391–3405 (1982).

    Article  CAS  Google Scholar 

  12. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  13. Vardimon, L., Kressmann, A., Cedar, H., Maechler, M. & Doerfler, W. Proc. natn. Acad. Sci. U.S.A. 79, 1073–1077 (1982).

    Article  CAS  ADS  Google Scholar 

  14. Fradin, A., Manley, J. L. & Prives, C. L. Proc. natn. Acad. Sci. U.S.A. 79, 5142–5146 (1982).

    Article  CAS  ADS  Google Scholar 

  15. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  16. Moss, T. Nature 302, 223–228 (1983).

    Article  CAS  ADS  Google Scholar 

  17. Maxam, A. M. & Gilbert, W. Meths Enzymol. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  18. Moss, T., Boseley, P. G. & Birnstiel, M. L. Nucleic Acids Res. 8, 467–485 (1980).

    Article  CAS  Google Scholar 

  19. Brown, D. D. & Gurdon, J. Proc. natn. Acad. Sci. U.S.A. 74, 2064–2068 (1977).

    Article  CAS  ADS  Google Scholar 

  20. Fedoroff, N. V. & Brown, D. D. Cell 13, 701–716 (1978).

    Article  CAS  Google Scholar 

  21. Miller, J. R., Cartwright, E. M., Brownlee, G. G., Fedoroff, N. V. & Brown, D. D. Cell 13, 717–725 (1978).

    Article  CAS  Google Scholar 

  22. Stuhlmann, H., Jahner, D. & Jaenisch, R. Cell 26, 221–232 (1981).

    Article  CAS  Google Scholar 

  23. Cedar, H. et al. Cold Spring Harb. Symp. quant. Biol. 47, 605–609 (1983).

    Article  Google Scholar 

  24. Busby, S. & Reeder, R. H. (1983) Cell (in the press).

  25. Bird, A. P., Taggart, M. H. & Gehring, C. J. molec. Biol. 152, 1–17 (1981).

    Article  CAS  Google Scholar 

  26. Newport, J. & Kirschner, M. Cell 30, 675–686 (1982).

    Article  CAS  Google Scholar 

  27. Kressman, A., Clarkson, S. G. & Telford, J. L. Cold Spring Harb. Symp. quant. Biol. 42, 1077–1082 (1978).

    Article  Google Scholar 

  28. Dawid, I. B., Brown, D. D. & Reeder, R. H. J. molec. Biol. 51, 341–360 (1970).

    Article  CAS  Google Scholar 

  29. Birnstiel, M. L., Sells, B. H. & Purdom, I. F. J. molec. Biol. 63, 21–39 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macleod, D., Bird, A. Transcription in oocytes of highly methylated rDNA from Xenopus laevis sperm. Nature 306, 200–203 (1983). https://doi.org/10.1038/306200a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306200a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing