Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences

Abstract

The theory of evolution predicts that similar phylogenetic trees should be obtained from different sets of character data. We have tested this prediction using sequence data for 5 proteins from 11 species. Our results are consistent with the theory of evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Popper, K. Unended Quest: An Intellectual Autobiography (Fontana, London, 1976).

    Google Scholar 

  2. Popper, K. Dialectica, 32, 339–355 (1978).

    Article  Google Scholar 

  3. Halstead, B. New Scientist 87, 215–217 (1980).

    Google Scholar 

  4. Ruse, M. New Scientist 89, 828–830 (1981).

    Google Scholar 

  5. Editorial Nature 290, 75–76 (1981).

  6. Harary, F. Graph Theory (Addison-Wesley, Reading, Massachusetts, 1969).

    Book  Google Scholar 

  7. Carre, B. Graphs and Networks (Clarendon, Oxford, 1979).

    MATH  Google Scholar 

  8. Zuckerkandl, E. & Pauling, L. J. theor. Biol. 8, 357–366 (1965).

    Article  CAS  Google Scholar 

  9. Dayhoff, M. O. & Eck, R. V. Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Silver Springs, Maryland, 1966).

    Google Scholar 

  10. Fitch, W. M. Am. Nat. 111, 223–257 (1977).

    Article  Google Scholar 

  11. Goodman, M., Czelusniak, J., Moore, G. W. & Romero-Herrara, A. E. Syst. Zool. 28, 132–163(1979).

    Article  CAS  Google Scholar 

  12. Mickevich, M. F. Syst. Zool. 27, 143–158 (1978).

    Article  Google Scholar 

  13. Cavalli-Sforza, L. L. & Edwards, A. W. F. Evolution 21, 550–570 (1967).

    Article  CAS  Google Scholar 

  14. Felsenstein, J. Syst. Zool. 27, 27–33 (1978).

    Article  Google Scholar 

  15. Hendy, M. D., Foulds, L. R. & Penny, D. Math. Biosci. 51, 71–89 (1980).

    Article  MathSciNet  Google Scholar 

  16. Foulds, L. R. & Hendy, M. D. J. molec. Evol. 13, 127–150 (1978).

    Article  ADS  Google Scholar 

  17. Hendy, M. D. & Penny, D. Math. Biosci. 59 (in the press)

  18. Smith, T. F. & Waterman, M. S. Am. Math. Mon. 87, 552–553 (1980).

    Article  Google Scholar 

  19. Robinson, D. F. & Foulds, L. R. Springer Lect. Notes Math. 748, 119–126 (1979).

    Article  Google Scholar 

  20. Waterman, M. S. & Smith, T. F. J. theor. Biol. 73, 789–800 (1978).

    Article  CAS  Google Scholar 

  21. Dayhoff, M. O. Atlas of Protein Sequence and Structure 1972 (National Biomedical Research Foundation, Silver Springs, Maryland 1972)).

    Google Scholar 

  22. Penny, D., Hendy, M. D. & Foulds, L. R. Biochem. J. 187, 65–74 (1980).

    Article  CAS  Google Scholar 

  23. van Ooyen, A. et al. Science 206, 337–344 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Popper, K. R. Objective Knowledge (Oxford University Press, 1972).

    Google Scholar 

  25. Margush, T. & McMorris, F. R. Bull. Math, Biol. 43, 239–244 (1981).

    MathSciNet  Google Scholar 

  26. McKenna, M. C. in Phylogeny of Primates (eds Luckett, W. P. & Szalay, F. S.) 21–46 (Plenum, New York, 1975).

    Book  Google Scholar 

  27. Szalay, F. S. in Major Patterns in Vertebrate Evolution (eds Hecht, M. K., Goody, P. C. & Hecht, B. M.) 315–374 (Plenum, New York, 1976).

    Google Scholar 

  28. Schwartz, R. M. & Dayhoff, M. O. Science 199, 395–403 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Eigen, M. & Winkler-Oswatitsch, R. Naturwissenschaften 68, 217–228 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Lakatos, I. in Method and Appraisal in Physical Science (ed. Howsen, C.) 1–40 (Cambridge University Press, 1976).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penny, D., Foulds, L. & Hendy, M. Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297, 197–200 (1982). https://doi.org/10.1038/297197a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297197a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing