Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lower fidelity of RecA protein catalysed homologous pairing with a superhelical substrate

Abstract

The heteroduplex joint, a splice containing paired strands from each of two DNA molecules is a key feature of homologous genetic recombination1,2. The formation of such a lap joint ensures that heterologous chromosomes do not recombine; presumably the degree of homology determines the frequency of crossing over between related but non-identical chromosomes. On the other hand, according to the current ideas on recombination, the formation of heteroduplex joints is not a stringent process. Genetic evidence supports the view that the classical phenomena of meiotic gene conversion and aberrant meiotic segregation result in part from the inclusion of mismatched base pairs in heteroduplex joints, and the subsequent correction of some of these mismatched pairs before replication3–5. Thus meiotic gene conversion signals one kind of departure from perfectly faithful pairing. The association of increased mutation frequencies with crossing-over is another kind of departure from fidelity in recombination6–8. Little is known about the effect of imperfect homology either on the initial pairing of DNA molecules, or on the formation and extension of heteroduplex joints. The nucleotide sequences of phages 3ΦX174 and G4 are related, but differ by 33% of bases in the coding regions. Here we show using combinations of 3ΦX174 and G4 DNA, that Escherichia coli RecA protein catalyses the formation of joint molecules with many mismatched base pairs, but only if one of the molecules is superhelical. By contrast, in the absence of RecA protein, superhelicity does not cause ΦX174 and G4 DNA to form D-loops spontaneously at any temperature between 37 and 75°C. These observations focus attention on the role of RecA protein in unwinding DNA, and on superhelicity as a factor that can lessen the fidelity of homologous pairing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fox, M. S. A. Rev. Genet. 12, 47–68 (1978).

    Article  CAS  Google Scholar 

  2. Radding, C. M. A. Rev. Biochem. 47, 847–880 (1978).

    Article  CAS  Google Scholar 

  3. Stadler, D. R. A. Rev. Genet. 7, 113–127 (1973).

    Article  CAS  Google Scholar 

  4. Fogel, S., Mortimer, R., Lusnak, K. & Tavares, F. Cold Spring Harb. Symp. quant. Biol. 43, 1325–1341 (1978).

    Article  Google Scholar 

  5. Rossignol, J-L., Paquette, N. & Nicolas, A. Cold Spring Harb. Symp. quant. Biol. 43, 1343–1352 (1978).

    Article  Google Scholar 

  6. Magni, G. E. & Von Borstel, R. C. Genetics 47, 1097–1108 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Magni, G. E. Proc. natn. Acad. Sci. U.S.A. 50, 975–980 (1963).

    Article  ADS  CAS  Google Scholar 

  8. Strigini, P. Genetics 52, 759–776 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Clark, A. J. A. Rev. Genet. 7, 67–86 (1973).

    Article  CAS  Google Scholar 

  10. Kobayashi, I. & Ikeda, H. Molec. gen. Genet. 166, 25–29 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. DasGupta, C., Shibata, T., Cunningham, R. P. & Radding, C. M. Cell 22, 437–446 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Cunningham, R. P., Wu, A. M., Shibata, T., DasGupta, C. & Radding, C. M. Cell 24, 213–223 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. DasGupta, C., Wu, A. M., Kahn, R., Cunningham, R. P. & Radding, C. M. Cell 25, 507–516 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Kahn, R., Cunningham, R. P., DasGupta, C. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 78, 4786–4790 (1981).

    Article  ADS  CAS  Google Scholar 

  15. DasGupta, C. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. (in the press).

  16. Cox, M. M. & Lehman, I. R. Proc. natn. Acad. Sci. U.S.A. 78, 3433–3437 (1981); Proc. natn. Acad. Sci. U.S.A. 78, 6018–6022 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Shibata, T., DasGupta, C., Cunningham, R. P. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 76, 1638–1642 (1979).

    Article  ADS  CAS  Google Scholar 

  18. McEntee, K., Weinstock, G. M. & Lehman, I. R. Proc. natn. Acad. Sci. U.S.A. 76, 2615–2619 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Beck, E. et al. Nucleic Acids Res. 5, 4495–4503 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Wezenbeek, P. M. G. F., Hulsebos, T. J. M. & Schoenmakers, J. G. G. Gene 11, 129–148 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Godson, G. N., Fiddes, J. C., Barrell, B. G. & Sanger, F. in The Single-Stranded DNA Phages (eds Denhardt, D. T., Dressier, D. & Ray, D. S.) 51–86 (Cold Spring Harbor Laboratory, New York, 1978).

    Google Scholar 

  22. Godson, G. N. in The Single-Stranded DNA Phages (eds Denhardt, D. T., Dressier, D. & Ray, D. S.) 671–695 (Cold Spring Harbor Laboratory, New York, 1978).

    Google Scholar 

  23. Cunningham, R. P., DasGupta, C., Shibata, T. & Radding, C. M. Cell 20, 223–235 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Radding, C. M., Beattie, K. L., Holloman, W. K. & Wiegand, R. C. J. molec. Biol. 116, 825–839 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Beattie, K. L., Wiegand, R. C. & Radding, C. M. J. molec. Biol. 116, 783–803 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Cunningham, R. P., Shibata, T., DasGupta, C. & Radding, C. M. Nature 281, 191–195 (1979); 282, 426 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DasGupta, C., Radding, C. Lower fidelity of RecA protein catalysed homologous pairing with a superhelical substrate. Nature 295, 71–73 (1982). https://doi.org/10.1038/295071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing