Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wild-type tRNATyrG reads the TMV RNA stop codon, but Q base-modified tRNATyrQ does not

Abstract

Although protein synthesis usually terminates when a stop codon is reached along the messenger RNA sequence, there are examples, mainly in viruses, of the stop codon being suppressed by a tRNA species. A strong candidate for this phenomenon occurs in tobacco mosaic virus (TMV) in the form of two proteins (110K and 160K, of molecular weights 110,000 and 160,000, respectively)1, sharing an N-terminus sequence, which are translated in vitro from a purified species of viral RNA. We have investigated the identity of the tRNA responsible for production of the 160K protein and show here that it is one of the tyrosine tRNAs. Another tyrosine tRNA, in which the first base of the anticodon is highly modified, does not act as a suppressor, indicating the possible regulatory function of such modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pelham, H. R. B. Nature 272, 469–471 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Bienz, M. et al. Nucleic Acids Res. 8, 5169–5178 (1980).

    Article  CAS  Google Scholar 

  3. Dudler, R. et al. Chromosoma 84, 49–60 (1981).

    Article  CAS  Google Scholar 

  4. Vögeli, G. Nucleic Acids Res. 7, 1059–1065 (1979).

    Article  Google Scholar 

  5. Bienz, M. thesis, Univ. Zürich (1981).

  6. Knowland, J. Genetics 78, 383–394 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  Google Scholar 

  8. Sakai, F. & Takebe, I. Molec. gen. Genet. 118, 93–96 (1972).

    Article  CAS  Google Scholar 

  9. Bruening, G. et al. Virology 71, 498–517 (1976).

    Article  CAS  Google Scholar 

  10. Morch, M. D. & Benicourt, C. Eur. J. Biochem. 105, 445–451 (1980).

    Article  CAS  Google Scholar 

  11. Piper, P. W. et al. Nature 262, 757–761 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Zimmern, D. Cell 11, 463–482 (1977).

    Article  CAS  Google Scholar 

  13. Heckman, J. thesis, Massachusetts Inst. Technol. (1975).

  14. Manley, J. L. J. molec. Biol. 125, 407–432 (1978).

    Article  CAS  Google Scholar 

  15. Atkins, J. F. Cell 18, 1119–1131 (1979).

    Article  CAS  Google Scholar 

  16. Crick, F. H. C. J. molec. Biol. 19, 548–555 (1966).

    Article  CAS  Google Scholar 

  17. Lagerkvist, U. Proc. natn. Acad. Sci. U.S.A. 75, 1759–1762 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Twardzik, D. R. et al. J. molec. Biol. 57, 231–245 (1971).

    Article  CAS  Google Scholar 

  19. White, B. N. et al. J. molec. Biol. 74, 635–651 (1973).

    Article  CAS  Google Scholar 

  20. Owenby, R. K. et al. Mechanisms Ageing Dev. 11, 91–103 (1979).

    Article  CAS  Google Scholar 

  21. Gauss, D. H. & Sprinzl, M. Nucleic Acids Res. 9, r1–r23 (1981).

    Article  CAS  Google Scholar 

  22. Salser, W. et al. Cold Spring Harb. Symp. quant. Biol. 34, 513–520 (1969).

    Article  CAS  Google Scholar 

  23. Feinstein, S. I. & Altman, S. Genetics 88, 201–219 (1977).

    Google Scholar 

  24. Bossi, L. & Roth, J. R. Nature 286, 123–127 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Bienz, M. et al. Nucleic Acids Res. 9, 3835–3850 (1981).

    Article  CAS  Google Scholar 

  26. Kohli, J. & Grosjean, H. Molec. gen. Genet. 182, 430–439 (1981).

    Article  CAS  Google Scholar 

  27. Weiner, A. M. & Weber, K. Nature new Biol. 234, 206–209 (1971).

    Article  CAS  Google Scholar 

  28. Weiner, A. M. & Weber, K. J. molec. Biol. 80, 837–855 (1973).

    Article  CAS  Google Scholar 

  29. Hofstetter, H. et al. Biochim. biophys. Acta 374, 238–251 (1974).

    Article  CAS  Google Scholar 

  30. Geller, A. I. & Rich. A. Nature 283, 41–46 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Hosbach, H. A. & Kubli, E. Mechanisms Ageing Dev. 10, 141–149 (1979).

    Article  CAS  Google Scholar 

  32. Nishimura, S. in Transfer RNA: Structure, Properties and Recognition, 59–79 (Cold Spring Harbor Laboratory, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienz, M., Kubli, E. Wild-type tRNATyrG reads the TMV RNA stop codon, but Q base-modified tRNATyrQ does not. Nature 294, 188–190 (1981). https://doi.org/10.1038/294188a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294188a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing