Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Change in a specific phosphoprotein band following associative learning in Hermissenda

Abstract

Although cellular neurophysiological studies of invertebrates have provided some understanding of the cellular basis of modifiable behaviour (for reviews, see refs 1–5), little is known about biochemical changes in the specific neural pathways accompanying alterations in behaviour. The nervous systems and sensory structures of invertebrates are especially suitable to an analysis of the biochemical mechanisms involved in behavioural modification because they typically contain a relatively small number of neurones, some of which have large, identifiable somata, and because associative learning has been studied in several invertebrate preparations6–10. Studies with the nudibranch mollusc Hermissenda crassicornis have demonstrated a short-term non-associative change in phototactic behaviour after training with light and rotation11. More recently8,12, an example of associative learning in Hermissenda was produced by the temporal association of light and a presumed aversive stimulus. This associative learning is accompanied by neurophysiological changes in the B-type photoreceptors12. We now report that there is also a change in the level of incorporation of 32P in a 20,000-molecular weight (MW) phosphoprotein; as the eye of Hermissenda consists of only five photoreceptors, a lens and a few pigment and epithelial cells, a biochemical change specific to associative learning has thus been localized to a few cells within a nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kandel, E. R. & Spencer, W. A. Physiol. Rev. 48, 65–134 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Kandel, E. R. Cellular Basis of Behavior (Freeman, San Francisco, 1976).

    Google Scholar 

  3. Krasne, F. B. in Neural Mechanisms of Learning and Memory (eds Rosenzweig, M. R. & Bennett, E. L.) 401–429 (MIT Press, Cambridge, Massachusetts, 1976).

    Google Scholar 

  4. Willows, A. O. D. in Invertebrate Learning Vol. 2 (eds Corning, W. C., Dyal, J. A. & Willows, A. O. D.) 187–274 (Plenum, New York, 1973).

    Book  Google Scholar 

  5. Alkon, D. L. Biol. Bull. 159, 505–560 (1980).

    Article  Google Scholar 

  6. Gelperin, A. Science 189, 567–570 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Mpitsos, G. J., Collins, S. D. & McClellan, A. D. Science 199, 497–506 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Crow, T. J. & Alkon, D. L. Science 201, 1239–1241 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Walters, E. T., Carew, T. J. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 76, 6675–6679 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Hoyle, G. J. Neurobiol. 11, 323–354 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Alkon, D. L. J. gen. Physiol. 64, 70–84 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crow, T. J. & Alkon, D. L. Science 209, 412–414 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Alkon, D. L. Science 205, 810–816 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Tyndale, C. L. & Crow, T. J. IEEE Trans. biomed. Engng BME26, 649–655 (1979).

    Article  CAS  Google Scholar 

  15. Neary, J. T. Fedn Proc. 39, 2166 (1980).

    Google Scholar 

  16. Laemmli, U.K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Lasky, R. A. & Mills, A. D. FEBS Lett. 82, 314–316 (1977).

    Article  Google Scholar 

  18. Eakin, R. M., Westfall, J. A. & Dennis, M. J. J. Cell Sci. 2, 349–358 (1967).

    CAS  PubMed  Google Scholar 

  19. Stensaas, L. J., Stensaas, S. S. & Trujillo-Cenoz, O. J. ultrastruct. Res. 27, 510–532 (1969).

    Article  CAS  PubMed  Google Scholar 

  20. Dennis, M. J. J. Neurophysiol. 30, 1439–1465 (1967).

    Article  CAS  PubMed  Google Scholar 

  21. Alkon, D. L. Fedn Proc. 33, 1083–1090 (1974).

    CAS  Google Scholar 

  22. Akaike, T. & Alkon, D. L. J. Neurophysiol. 44, 501–513 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Rubin, C. S. & Rosen, O. M. A. Rev. Biochem. 44, 831–887 (1975).

    Article  CAS  Google Scholar 

  24. Krebs, E. G. & Beavo, J. A. A. Rev. Biochem. 48, 923–959 (1979).

    Article  CAS  Google Scholar 

  25. Williams, M. & Rodnight, R. Prog. Neurobiol. 8, 183–250 (1977).

    Article  Google Scholar 

  26. Greengard, P. Nature 260, 101–108 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Browning, M., Dunwiddie, T., Bennet, W., Gispen, W. & Lynch, G. Science 203, 60–62 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bär, P. R., Schotman, P., Gispen, W. H., Tielen, A. M. & Lopes da Silva, F. H. Brain Res. 198, 478–484 (1980).

    Article  PubMed  Google Scholar 

  29. Ehrlich, Y. H. et al. J. Neurochem. 34, 1327–1330 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Levitan, I. B. & Barondes, S. H. Proc. natn. Acad. Sci. U.S.A. 71, 1145–1148 (1974).

    Article  ADS  CAS  Google Scholar 

  31. Ram, J. L. & Ehrlich, Y. H. J. Neurochem. 30, 487–491 (1978).

    Article  CAS  PubMed  Google Scholar 

  32. Jennings, K. R., Kaczmarek, L. K. & Strumwasser, F. Soc. Neurosci. Abstr. 5, 249 (1979).

    Google Scholar 

  33. Paris, C. G., Kandel, E. R. & Schwartz, J. H. Soc. Neurosci. Abstr. 6, 844 (1980).

    Google Scholar 

  34. Levitan, I. B. & Norman, J. Brain Res. 187, 415–429 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. Pant, H. C., Yoshioka, T., Tasaki, I. & Gainer, H. Brain Res. 162, 303–313 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Kandel, E. R., Brunelli, M., Bryne, J. & Castellucci, V. Cold Spring Harb. Symp. quant. Biol. 40, 465–482 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. O'Farrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  38. Ueda, T., Maeno, H. & Greengard, P. J. biol. Chem. 248, 8295–8305 (1973).

    CAS  PubMed  Google Scholar 

  39. Ehrlich, Y. H., Brunngraber, E. G., Sinha, P. K. & Prasad, K. N. Nature 265, 238–240 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Rudolph, S. A. & Kreuger, B. K. Adv. Cyclic Nucleotide Res. 10, 107–133 (1979).

    CAS  PubMed  Google Scholar 

  41. Acosta-Urguidi, J. et al. Soc. Neurosci. Abstr. 7, 944 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neary, J., Crow, T. & Alkon, D. Change in a specific phosphoprotein band following associative learning in Hermissenda. Nature 293, 658–660 (1981). https://doi.org/10.1038/293658a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293658a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing