Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antiprotons in the cosmic radiation

Abstract

Golden et al.1 have demonstrated that the measured ratio of the flux of antiprotons to protons (p̄/p ratio) is significantly greater than expected from the commonly adopted ‘leaky box’ model of cosmic ray propagation, a model in which the p̄'s are secondaries generated by the interaction of cosmic rays with the interstellar medium (ISM) in the Galaxy. At the energy at which measurements were made (kinetic energy8 GeV), disturbing effects due to interplanetary modulation are negligible and there is now general agreement2–5 that the excess is a factor of 3 at least (an earlier calculation6 of the expected p̄/p which gave a result near to observation has been shown to be incorrect2–5). Bogolomov7 found a similar but statistically less compelling enhancement at somewhat lower energies. A prominent characteristic of the p̄/p ratio for galactic secondaries is a rapid fall with decreasing energy, below5 GeV, due to kinematic factors. It was therefore remarkable that Buffington et al.8 recently reported a ratio only a factor of 2.5 smaller at a very low kinetic energy (average0.2 GeV). This result, if correct, necessitates serious consideration of more exotic explanations. An important feature at these very low energies is the modulation of the flux by the interplanetary field and we have now examined this facet. We describe an improved calculation of the energy spectrum of p̄ expected for the standard leaky box model and show that even the enhanced secondary p̄ production in the ‘closed Galaxy’ model of Peters and Westergaard9 fails by a wide margin to reproduce the high observed flux at low energies. A more radical departure from conventional thinking is to regard the observed p̄s as primaries; a universal baryon-symmetric model and a black hole evaporation model are considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Golden, R. L. et al. Phys. Rev. Lett. 43, 1196 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Gaisser, T. K. & Maurer, R. H. Phys. Rev. Lett. 30, 1264 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Szabelski, J., Wdowczyk, J. & Wolfendale, A. W. Nature 285, 386 (1981).

    Article  ADS  Google Scholar 

  4. Stephens, S. A. Nature 289, 267 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Tan, L. C. & Ng, L. K. J. Phys. G7, 123 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Badhwar, G. D. et al. Astrophys. Space Sci. 37, 283 (1975).

    Article  ADS  Google Scholar 

  7. Bogomolov, E. A. et al. Proc. Int. Cosmic Ray Conf., Kyoto, 1, 330 (1979).

    ADS  CAS  Google Scholar 

  8. Buffington, A., Schindler, S. M. & Pennypacker, C. R. Astrophys. J. (in the press).

  9. Peters, B. & Westergaard, N. J. Astrophys. Space Sci. 48, 21 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Goldstein, M. L., Fisk, L. A. & Ramaty, R. Phys. Rev. Lett. 25, 832 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Urch, I. H. & Gleeson, L. J. Astrophys. Space Sci. 20, 177 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Jokipii, J. R. & Kopriva, D. A. Astrophys. J. 234, 381 (1979).

    Article  ADS  Google Scholar 

  13. Evenson, P. et al. EFI Preprint 81–14, Pap. SH 4.2–3; Proc. int. Cosmic Ray Conf., Paris (in the press).

  14. Strong, A. W. & Wolfendale, A. W. J. Phys. G4, 1793 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Giler, M. et al. J. Phys. A10, 843 (1977).

    ADS  CAS  Google Scholar 

  16. Stecker, F. W. NASA Tech. Mem. 82083 (1981).

  17. Strong, A. W., Wolfendale, A. W. & Worrall, D. M. Mon. Not. R. astr. Soc. 175, 23 (1976).

    Article  ADS  Google Scholar 

  18. Wdowczyk, J. & Wolfendale, A. W. Nature 281, 356 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Khazan, Y. M. & Ptuskin, V. S. Proc. int. Cosmic Ray Conf., Plovdiv, 2, 4 (1977).

    ADS  Google Scholar 

  20. Said, S. S. et al. Proc. Int. Cosmic Ray Conf., Paris (in the press).

  21. Hawking, S. W. Nature 248, 30 (1974).

    Article  ADS  Google Scholar 

  22. Page, D. F. & Hawking, S. W. Astrophys. J. 206, 1 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Carr, B. J. Astrophys. J. 206, 8 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Carter, B. et al. Astr. Astrophys. 52, 427 (1976).

    ADS  CAS  Google Scholar 

  25. Page, D. N. Phys. Rev. D13, 198 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Page, D. N. Phys. Rev. D16, 2402 (1977).

    ADS  CAS  Google Scholar 

  27. Carr, B. J. Astrophys J. 201, 1 (1975).

    Article  ADS  Google Scholar 

  28. Giler, M., Wdowczyk, J. & Wolfendale, A. W. Astr. Astrophys. 84, 44 (1980).

    ADS  CAS  Google Scholar 

  29. Strong, A. W. & Wolfendale, A. W. J. Phys. G4, 1793 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiraly, P., Szabelski, J., Wdowczyk, J. et al. Antiprotons in the cosmic radiation. Nature 293, 120–122 (1981). https://doi.org/10.1038/293120a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293120a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing