Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A homoeotic mutation transforming leg to antenna in Drosophila

Abstract

Insects are thought to have evolved from millipede-like ancestors composed largely of a series of identical, leg-bearing segments. This view of insect evolution is supported by the existence of homoeotic mutations which transform particular abdominal and head segments into thoracic segments1–3. Such transformations are described as atavistic3, because they return specialized segments to a more primitive condition. In Drosophila, several dominant mutations of the homoeotic locus Antennapedia (Antp) lead to a transformation of the antenna to the second leg4–8. Here, I describe the isolation and characterization of apparent null alleles of the Antp locus. These mutations lead to a homoeotic phenotype which is the reverse of the dominant Antennapedia phenotype, namely, they result in the transformation of the second leg into an antenna but do not alter the development of the normal antenna itself. This result indicates that (1) the product of the wild-type Antp gene is normally active in the mesothorax where it promotes a mesothoracic pathway of development instead of an antennal pathway, (2) the Antp+ gene product is normally absent or inactive in the antenna, and (3) dominant mutations of the locus result in the inappropriate activity of the wild-type gene product in the antenna, and hence in the transformation of antenna to leg. Thus, unlike most other homoeotic gene products, the product of the Antp+ gene seems to promote, not to repress or modify, an atavistic condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewis, E. B. Am. Zool. 3, 33–56 (1963); Nature 276, 565–570 (1978).

    Article  Google Scholar 

  2. Tazima, Y. The Genetics of the Silkworm (Logos, London, 1964).

    Google Scholar 

  3. Garcia-Bellido, A. Am. Zool. 17, 613–629 (1977).

    Article  Google Scholar 

  4. Yu, S. thesis, California Inst. Technol. (1949).

  5. Le Calvez, J. Bull. Biol. Fr. Belg. 82, 97–113 (1948).

    Google Scholar 

  6. Lewis, E. B. Drosoph. Inf. Serv. 30, 76–77 (1956).

    Google Scholar 

  7. Gehring, W. Arch. Klaus-Stift. Vererb.-Forsch. 41, 44–54 (1966).

    Google Scholar 

  8. Kaufman, T. C., Lewis, R. & Wakimoto, B. Genetics 94, 115–133 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lifschytz, E. & Falk, R. Genetics 62, 353–358 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Denell, R. E. Mutat. Res. 15, 221–223 (1972).

    Article  CAS  Google Scholar 

  11. Duncan, I. W. & Kaufman, T. C. Genetics 80, 733–752 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewis, E. B. & Bacher, F. Drosoph. Inf. Serv. 43, 193 (1968).

    Google Scholar 

  13. O'Brian, S. J. & MacIntyre, R. J. in Genetics and Biology of Drosophila Vol. 2 (eds Ashburner, M. & Wright, T. R. F.) 395–551 (Academic, London, 1978).

    Google Scholar 

  14. Wakimoto, B. T. & Kaufman, T. C. Devl Biol. 81, 51–64 (1981).

    Article  CAS  Google Scholar 

  15. Lindsley, D. L. & Grell, E. L. Carnegie Inst. Wash. Publ. 627 (1968).

  16. Ferrus, A. Genetics 79, 589–599 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morata, G. & Ripoll, P. Devl Biol. 42, 211–221 (1975).

    Article  CAS  Google Scholar 

  18. Garcia-Bellido, A., Ripoll, P. & Morata, G. Nature new Biol. 245, 251–253 (1973); Devl Biol. 48, 132–147 (1976).

    Article  CAS  Google Scholar 

  19. Crick, F. H. C. & Lawrence, P. A. Science 189, 340–347 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Morata, G. & Lawrence, P. A. Nature 274, 473–474 (1978); Devl Biol. 70, 355–371 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Lawrence, P. A., Struhl, G. & Morata, G. J. Embryol. exp. Morph. 51, 195–208 (1979).

    CAS  PubMed  Google Scholar 

  22. Kauffman, S. A. & Ling, E. Wilhelm Roux Arch. EntwMech. Org. 189, 147–153 (1980).

    Article  Google Scholar 

  23. Ferris, G. F. in Biology of Drosophila (ed. Demerec, M.) 369–419 (Wiley, New York, 1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struhl, G. A homoeotic mutation transforming leg to antenna in Drosophila. Nature 292, 635–638 (1981). https://doi.org/10.1038/292635a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292635a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing