Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New class of glutamate agonist structurally related to ibotenic acid

Abstract

L-Glutamic acid (Glu) and L-aspartic acid (Asp) are putative excitatory transmitters in the mammalian central nervous system (CNS)1–3. Receptors at Glu- and Asp-mediated synapses are presumably different4,5, and a prerequisite for the identification and characterisation of such sites is the availability of specific antagonists and agonists. Among various potential Glu and Asp antagonists3–6 Glu diethyl ester (GDEE)7–9 and (D)-α-aminoadipic acid (α-AA)9–13 show some selectivity, the latter particularly towards excitation by N-methyl-Asp. Kainic acid (KA), a structural analogue of Glu, is a powerful excitant of CNS neurones14–16 that seems to interact with only a small proportion of Glu receptors5. Ibotenic acid (Ibo) is a powerful neuronal excitant9,17,18 also structurally related to Glu. Excitation by Ibo, however, is readily antagonised by α-AA, whereas GDEE has little or no effect13, suggesting that Ibo preferentially activates Asp rather than Glu receptors. Furthermore, excitation of neurones by Ibo is followed by a prolonged depression of excitability18,19 which is sensitive to bicuculline methochloride19, indicating that Ibo is probably converted by decarboxylation into muscimol20 during microelectrophoretic ejection near CNS neurones. Thus, neither KA nor Ibo seem to have sufficient specificity to be useful compounds with which to study central Glu or Asp receptors. We describe here a new class of Glu agonist obtained by structural manipulation of Ibo (Table 1). Elongation of the side chain of Ibo by an additional methylene group and introduction of different ring substituents have led to isoxazole amino acids with carboxyl groups resistant to decarboxylation. A further aim of this homologation was to convert the apparent Asp agonist Ibo into a Glu agonist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Curtis, D. R. & Johnston, G. A. R. Ergebn. Physiol. 69, 97–188 (1974).

    CAS  PubMed  Google Scholar 

  2. Krnjević, K. Physiol. Rev. 54, 418–540 (1974).

    Article  Google Scholar 

  3. Curtis, D. R. in Glutamic Acid: Advances in Biochemistry and Physiology (eds Filer, L. J. Jr et al.) 163–175 (Raven, New York, 1979).

    Google Scholar 

  4. Watkins, J. C. in Kainic Acid as a Tool in Neurobiology (eds McGeer, E. G., Olney, J. W. & McGeer, P. L.) 37–39 (Raven, New York, 1978).

    Google Scholar 

  5. Johnston, G. A. R. in Glutamic Acid: Advances in Biochemistry and Physiology (eds Filer, L. J. Jr et al.) 177–185 (Raven, New York, 1979).

    Google Scholar 

  6. McLennan, H. in Handbook of Psychopharmacology Vol. 4 (eds Iversen, L. L., Iversen, S. D. & Snyder, S. H.) 211–228 (Plenum, New York, 1975).

    Google Scholar 

  7. Curtis, D. R. et al. Brain Res. 41, 283–301 (1972).

    Article  CAS  Google Scholar 

  8. Haldeman, S. & McLennan, H. Brain Res. 45, 393–400 (1972).

    Article  CAS  Google Scholar 

  9. Hall, J. G., Hicks, T. P., McLennan, H., Richardson, T. L. & Wheal, H. V. J. Physiol., Lond. 286, 29–39 (1979).

    Article  CAS  Google Scholar 

  10. Biscoe, T. J. et al. Eur. J. Pharmac. 45, 315–316 (1977).

    Article  CAS  Google Scholar 

  11. Biscoe, T. J. et al. Brain Res. 148, 543–548 (1978).

    Article  CAS  Google Scholar 

  12. Lodge, D., Headley, P. M. & Curtis, D. R. Brain Res. 153, 603–608 (1978).

    Article  Google Scholar 

  13. McLennan, H. & Lodge, D. Brain Res. 169, 83–90 (1979).

    Article  CAS  Google Scholar 

  14. Shinozaki, H. & Konishi, S. Brain Res. 24, 368–371 (1970).

    Article  CAS  Google Scholar 

  15. Johnston, G. A. R., Curtis, D. R., Davies, J. & McCulloch, R. M. Nature 248, 804 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Biscoe, T. J., Evans, R. H., Headley, P. M., Martin, M. R. & Watkins, J. C. Br. J. Pharmac. 58, 373–382 (1976).

    Article  CAS  Google Scholar 

  17. Johnston, G. A. R., Curtis, D. R., de Groat, W. C. & Duggan, A. W. Biochem. Pharmac. 17, 2488–2489 (1968).

    Article  CAS  Google Scholar 

  18. MacDonald, J. F. & Nistri, A. J. Physiol., Lond. 275, 449–465 (1978).

    Article  CAS  Google Scholar 

  19. Curtis, D. R., Lodge, D. & McLennan, H. J. Physiol., Lond. 291, 19–28 (1979).

    Article  CAS  Google Scholar 

  20. Eugster, C. H. Fortschr. Chem. org. Natstoffe 27, 261–321 (1969).

    CAS  Google Scholar 

  21. Curtis, D. R., Duggan, A. W., Felix, D. & Johnston, G. A. R. Brain Res. 32, 69–96 (1971).

    Article  CAS  Google Scholar 

  22. Simon, J. R., Contrera, J. F. & Kuhar, M. J. J. Neurochem. 26, 141–147 (1976).

    CAS  PubMed  Google Scholar 

  23. Krogsgaard-Larsen, P., Hjeds, H., Curtis, D. R., Lodge, D. & Johnston, G. A. R. J. Neurochem. 32, 1717–1724 (1979).

    Article  CAS  Google Scholar 

  24. Hansen, J. J. & Krogsgaard-Larsen, P. JCS Commun. 87–88 (1979).

  25. Christensen, S. B. & Krogsgaard-Larsen, P. Acta chem. scand. B32, 27–30 (1978).

    Article  CAS  Google Scholar 

  26. Honoré, T. & Lauridsen, J. Acta chem. scand. (in the press).

  27. Krogsgaard-Larsen, P., Johnston, G. A. R., Curtis, D. R., Game, C. J. A. & McCulloch, R. M. J. Neurochem. 25, 803–809 (1975).

    Article  CAS  Google Scholar 

  28. Johnston, G. A. R., Kennedy, S. M. E. & Twitchin, B. J. Neurochem. 32, 121–127 (1979).

    Article  CAS  Google Scholar 

  29. London, E. D. & Coyle, J. T. Molec. Pharmac. 15, 492–505 (1979).

    CAS  Google Scholar 

  30. Balcar, V. J., Johnston, G. A. R. & Stephanson, A. L. Brain Res. 102, 143–151 (1976).

    Article  CAS  Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krogsgaard-Larsen, P., Honoré, T., Hansen, J. et al. New class of glutamate agonist structurally related to ibotenic acid. Nature 284, 64–66 (1980). https://doi.org/10.1038/284064a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/284064a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing