Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA double helical fragment at atomic resolution

Abstract

DETAILS of the molecular architecture of double helical ribonucleic acids at atomic resolution have recently become available from single crystal X-ray diffraction studies of dinucleotides composed of complementary bases1–3. No similar studies have been published for deoxynucleotides. We report here the structure of the deoxytetranucleotide d-pApTpApT (5′-P-adenylyl-(3′-5′)-thymidylyl-(3′-5′)-adenylyl-(3′-5′)-thymidine) (I) at a resolution of 1.0 Å. This is the first tetranucleotide whose structure has been elucidated by X-ray diffraction. The work is part of an investigation of protein–nucleic acid interactions using single-crystal studies of small model compounds. d-pApTpApT was chosen as one of the first compounds to be examined because there is evidence that poly(dA–dT) has unusual binding properties and that A.T-rich regions in certain DNAs have specific biological roles4–7. We hope that these investigations will provide information about the influence of specific base pairs and sequences on the fine details of the DNA structures, and thus aid the understanding of the selective recognition of nucleotide sequences of the DNA double helix by proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rosenberg, J. M. et al. Nature 243, 150–154 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Day, R. O., Seeman, N. C., Rosenberg, J. M. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 70, 849–853 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Hingerty, B. et al. Acta Crystallogr. B32, 2998–3013 (1976).

    Article  Google Scholar 

  4. Lin, S. Y. & Riggs, A. D. Nature 288, 1185–1186 (1970).

    Google Scholar 

  5. Riggs, A. D., Lin, S. & Wells, R. D. Proc. natn. Acad. Sci. U.S.A. 69, 761–764 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Lin, S. & Riggs, A. D. Biochem. biophys. Res. Commun. 45, 1542–1547 (1971).

    Article  CAS  Google Scholar 

  7. Wingert, L. & von Hippel, P. H. Biochim. biophys. Acta 157, 114–126 (1968).

    Article  CAS  Google Scholar 

  8. Watson, J. D. & Crick, F. H. C. Nature 171, 737–738 (1953).

    Article  ADS  CAS  Google Scholar 

  9. Arnott, S., Chandrasekaran, R., Hukins, D. W. L., Smith, P. J. C. & Watts, L. J. molec. Biol. 88, 523–533 (1974).

    Article  CAS  Google Scholar 

  10. Sundaralingam, M. Jerusalem Symp. Quantum Chem. Biochem. 5, 417–455 (1973).

    CAS  Google Scholar 

  11. Sussman, J. L., Seeman, N. C., Kim, S. H. & Berman, H. M. J. molec. Biol. 66, 403–421 (1971).

    Article  Google Scholar 

  12. Rubin, J., Brennen, T. & Sundaralingam, M. Biochemistry 11, 3112–3228 (1972).

    Article  CAS  Google Scholar 

  13. Camerman, N., Fawcett, J. K. & Camerman, A. J. molec. Biol. 107, 601–621 (1976).

    Article  CAS  Google Scholar 

  14. Laskowski, M. Prog. Nucleic Acid Res. molec. Biol. 12, 161–188 (1972).

    Article  CAS  Google Scholar 

  15. Arnott, S., Fuller, W., Hodgson, A. & Prutton, I. Nature 220, 561–564 (1968).

    Article  ADS  CAS  Google Scholar 

  16. Bram, S. Nature new Biol. 232, 174–176 (1971).

    Article  ADS  CAS  Google Scholar 

  17. Richmond, T. J. & Steitz, T. A. J. molec. Biol. 103, 25–38 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VISWAMITRA, M., KENNARD, O., JONES, P. et al. DNA double helical fragment at atomic resolution. Nature 273, 687–688 (1978). https://doi.org/10.1038/273687a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/273687a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing