Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photocell using covalently-bound dyes on semiconductor surfaces

Abstract

ONLY TiO2,1 SnO2,2 and SrTiO3,3,4 which do not undergo decomposition upon irradiation when used as photo-electrodes in aqueous media, are stable enough to be used as practical solar energy conversion and hydrogen production devices. The band gaps of these n-type semiconductors correspond to the energy of photons in the ultraviolet region. Solar energy reaching the Earth's surface has, however, a spectrum distribution in the longer wavelength range and cannot, therefore, be used effectively by these semiconductors5,6. Spectral sensitisation would solve this problem by extending the sensitivity of the electrochemical photocells to longer wavelengths. In applying this technique to a real photocell another problem may arise in that most of the solar energy is absorbed by the dye molecules in the solution rather than by the dye molecules adsorbed at the electrode–solution interface, though only the excited adsorbed dye molecules can contribute to sensitisation7–9. To cope with this we have developed a new type of photocell10. In this, the chemically modified SnO2 or TiO2 electrode, with rhodamine B as a sensitiser, was in contact with the transparent electrolyte solution containing a reducing agent as a supersensitiser. In this communication, further developments of this subject are described, especially, the correlation between the efficiency of sensitisation and the structure of the modified layer, which gives us the criteria for more successful chemical modifications of electrode surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fujishima, A. & Honda, K. Nature 238, 37–38 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Wrighton, M. S., Morse, D. L., Ellis, A. B., Ginley, D. S. & Abrahamson, H. B. J. Am. Chem. Soc. 98, 44–48 (1976).

    Article  CAS  Google Scholar 

  3. Watanabe, T., Fujishima, A. & Honda, K. Bull. Chem. Soc. Japan 49, 355–358 (1976).

    Article  CAS  Google Scholar 

  4. Wrighton, M. S., Ellis, A. B., Wolczanski, P. T., Morse, D. L., Abrahamson, H. B. & Ginley, D. S. J. Am. Chem. Soc. 98, 2774–2779 (1976).

    Article  CAS  Google Scholar 

  5. Gerischer, H. J. electroanal. Chem. 58, 263–274 (1975).

    Article  CAS  Google Scholar 

  6. Archer, M. D. J. appl. Electrochem. 5, 17–38 (1975).

    Article  CAS  Google Scholar 

  7. Gerischer, H. Photochem. Photobiol. 16, 243–260 (1972).

    Article  CAS  Google Scholar 

  8. Memming, R. Photochem. Photobiol. 16, 325–333 (1972).

    Article  CAS  Google Scholar 

  9. Fujishima, A., Watanabe, T., Tatsuoki, O. & Honda, K. Chem. Lett. 13–18 (1975).

    Article  Google Scholar 

  10. Osa, T. & Fujihira, M. Nature 264, 349–350 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Kurzer, F. & Douraghi-Zadeh, K. Chem. Rev. 67, 107–152 (1967).

    Article  CAS  Google Scholar 

  12. Fujihira, M., Matsue, T. & Osa, T. Chem. Lett. 875–880 (1976).

    Article  Google Scholar 

  13. Lane, R. F. & Hubbard, A. T. J. phys. Chem. 77, 1401–1410 (1973).

    Article  CAS  Google Scholar 

  14. Sprintschnik, G., Sprintschnik, H. W., Kirsch, P. P. & Whitten, D. G. J. Am. Chem. Soc. 98, 2337–2338 (1976).

    Article  CAS  Google Scholar 

  15. Toyoshima, Y., Morino, M., Motoki, H. & Sukigara, M. Nature 265, 187–189 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FUJIHIRA, M., OHISHI, N. & OSA, T. Photocell using covalently-bound dyes on semiconductor surfaces. Nature 268, 226–228 (1977). https://doi.org/10.1038/268226a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268226a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing