Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thioredoxin and glutathione regulate photosynthesis in chloroplasts

Abstract

TWO recently found chloroplast proteins act in the ferredoxin-linked regulation of enzymes of photosynthetic carbon dioxide assimilation1,2. We report here the identification of one of these proteins, earlier termed assimilation regulatory protein b (ARPb), as thioredoxin—a protein functional in the synthesis of DNA and previously not known in chloroplasts3–5. The other protein, assimilation regulatory protein a (ARPa), is a new enzyme that catalyses the reduction of thioredoxin by reduced ferredoxin. We have renamed this protein ‘ferredoxin–thioredoxin reductase.’ In addition to identifying these proteins found earlier, we present evidence for a regulatory function of glutathione in chloroplasts. These findings permit for the first time the formulation of a light-dependent mechanism for protein-mediated enzyme regulation. In this mechanism, key regulatory enzymes are activated (reduced) photochemically via the ferredoxin–thioredoxin system and are deactivated (oxidised) in the dark via oxidised glutathione. The evidence indicates that photoreduced ferredoxin, in the presence of ferredoxin–thioredoxin reductase, controls the level of reduced thioredoxin required for enzyme activation. Glutathione reductase and glutathione peroxidase seem to control the level of oxidised glutathione available for enzyme deactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schurmann, P., Wolosiuk, R. A., Breazeale, V. D. & Buchanan, B. B. Nature 263, 257–258 (1976).

    Article  ADS  Google Scholar 

  2. Buchanan, B. B. & Wolosiuk, R. A. Nature 264 669–670 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Reichard, P. J. biol. Chem. 237, 3513–3519 (1962).

    CAS  PubMed  Google Scholar 

  4. Laurent, T. C., Moore, E. C. & Reichard, P. J. biol. Chem. 239, 3436–3444 (1964).

    CAS  PubMed  Google Scholar 

  5. Holmgren, A., Söderberg, B. O., Eklund, H. & Bränden, C. I. Proc. natn. Acad. Sci. U.S.A. 72, 2305–2309 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Buchanan, B. B., Schürmann, P. & Kalberer, P. P. J. biol. Chem. 246, 5952–5959 (1971).

    CAS  PubMed  Google Scholar 

  7. Hogenkamp, H. P. C. & Sando, G. N. Structure Bonding 20, 23–58 (1974).

    Article  CAS  Google Scholar 

  8. Moore, E. C., Reichard, P. & Thelander, L. J. biol. Chem. 239, 3445–3452 (1964).

    CAS  PubMed  Google Scholar 

  9. Meister, A. & Tate, S. S. A. Rev. Biochem. 45, 559–604 (1976).

    Article  CAS  Google Scholar 

  10. Buchanan, B. B., Kalberer, P. P. & Arnon, D. I. Biochem. biophys. Res. Commun. 29, 74–79 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. Hendley, D. D. & Conn, E. E. Archs Biochem. Biophys. 46, 454–464 (1953).

    Article  CAS  Google Scholar 

  12. Mills, G. C. & Randle, H. P. J. biol. Chem. 229, 189–197 (1957).

    CAS  PubMed  Google Scholar 

  13. Colman, R. F. Meth. Enzym. 17B, 500–503 (1971).

    Article  Google Scholar 

  14. Chiu, D. T. Y., Stults, F. H. & Tappel, A. L. Biochim. biophys. Acta 445, 558–566 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Tolbert, N. E. A. Rev. Pl. Physiol. 22, 45–74 (1971).

    Article  CAS  Google Scholar 

  16. Beevers, H. in Photosynthesis and Photorespiration (eds Hatch, M. D., Osmond, C. B. & Slayter, R. O. 483–493 (Wiley-Interscience, New York, 1971).

    Google Scholar 

  17. Fahey, R. C., Brody, S. & Mikolajczyk, S. D. J. Bact. 121, 144–151 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Walker, D. A. Meth. Enzym. 23, 211–220 (1971).

    Article  Google Scholar 

  19. Loewus, F. A. Rev. Pl. Physiol. 22, 337–364 (1971).

    Article  CAS  Google Scholar 

  20. Engström, N. E., Holmgren, A., Larsson, A. & Söderhäll, S. J. biol. Chem. 249, 205–210 (1974).

    Google Scholar 

  21. Mark, D. F. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 73, 780–784 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Wolosiuk, R. A. & Buchanan, B. B. J. biol. Chem. 251, 6456–6461 (1976).

    CAS  PubMed  Google Scholar 

  23. Schürmann, P. & Buchanan, B. B. Biochim. biophys. Acta 376, 189–192 (1975).

    Article  PubMed  Google Scholar 

  24. Anderson, L. E. & Avron, M. Pl. Physiol. 57, 209–213 (1976).

    Article  CAS  Google Scholar 

  25. Heber, U. A. Rev. Pl. Physiol. 25, 393–421 (1974).

    Article  CAS  Google Scholar 

  26. Buchanan, B. B., Schürmann, P. Wolosiuk, R. A. Biochem. biophys. Res. Commun. 69, 970–976 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Hall, D. O., Rao, K. K. & Cammack, R. Biochem. biophys. Res. Commun. 47, 798–803 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. Whatley, F. R., Tagawa, K. & Arnon, D. I. Proc. natn. Acad. Sci. U.S.A. 49, 266–270 (1963).

    Article  ADS  CAS  Google Scholar 

  29. McSwain, B. D. & Arnon, D. I. Proc. natn. Acad. Sci. U.S.A. 61, 989–996 (1968).

    Article  ADS  CAS  Google Scholar 

  30. Malkin, R. & Bearden, A. J. Proc. natn. Acad. Sci. U.S.A. 68, 16–19 (1971).

    Article  ADS  CAS  Google Scholar 

  31. Ke, B. & Beinert, H. Biochim. biophys. Acta 305, 689–693 (1973).

    Article  CAS  PubMed  Google Scholar 

  32. Evans, M. C. W., Sihra, C. K., Bolton, J. R. & Cammack, R. Nature 256, 668–670 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WOLOSIUK, R., BUCHANAN, B. Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266, 565–567 (1977). https://doi.org/10.1038/266565a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266565a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing