Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Maximum Force Development in Cardiac Muscle

Abstract

CARDIAC muscle has less strength in comparison with skeletal muscle. It has therefore been suggested that there may be fundamental differences in their processes of force generating1–3. While skeletal muscle can develop isometric forces ranging from 17 to 40 g/mm2 (refs. 4–9), maximum forces of only 2 to 7 g/mm2 are reported2,10–15 for heart muscle. Certain functional differences should be considered, however, before intrinsic differences in the mechanism of contraction of cardiac and skeletal muscle are suggested. Thus the lower isometric tension of cardiac muscle could result from any or all of the following: (1) cardiac muscle cannot be tetanized, and maximum force might be limited by the finite duration of active state during the twitch contraction2; (2) the contractile state of heart muscle is variable and generally less than maxima12,11, whereas the contractile state of skeletal muscle is essentially constant3; and (3) a large proportion of myocardium consists of non-contractile structures such as mitochondria and nuclei, unlike skeletal muscle16. It is not known whether correction for these factors would explain discrepancies in force development. Accordingly, the maximum contractile force of cardiac muscle has been examined during maximum potentiation of contractile state, and corrected for non-contractile muscle mass. These corrections permit more meaningful comparisons of the maximum capacity for contraction of cardiac and skeletal muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huxley, H. E., Circulation Res. (suppl.), 24, 321 (1961).

    Google Scholar 

  2. Abbott, B. C., and Mommaerts, W. F. H. M., J. Gen. Physiol., 42, 533 (1959).

    Article  CAS  Google Scholar 

  3. Abbott, B. C., and Wilkie, D. R., J. Physiol., 120, 214 (1953).

    Article  CAS  Google Scholar 

  4. Wilkie, D. R., Prog. Biophys. Biochem., 4, 288 (1954).

    Google Scholar 

  5. Buchthal, F., Kaiser, E., and Rosenfalck, P., Biol. Meddr., 21, 1 (1951).

    Google Scholar 

  6. Hill, A. V., and Woledge, R. C., J. Physiol., 162, 311 (1962).

    Article  CAS  Google Scholar 

  7. Aubert, X., Le Couplage Énergetique de la Contraction Musculaire (Arscia, Brussels, 1956).

    Google Scholar 

  8. Jewell, B. R., and Wilkie, D. R., J. Physiol., 143, 515 (1958).

    Article  CAS  Google Scholar 

  9. Sexton, A. W., and Gersten, J. W., Science, 157, 199 (1967).

    Article  ADS  CAS  Google Scholar 

  10. Lundin, G., Acta Physiol. Scand., Suppl. 20 (1944).

  11. Sonnenblick, E. H., Amer. J. Physiol., 202, 931 (1962).

    CAS  PubMed  Google Scholar 

  12. Ullrich, W. C., Amer. J. Physiol., 206, 1285 (1964).

    Google Scholar 

  13. Brady, A. J., Fed. Proc., 24, 1410 (1965).

    CAS  PubMed  Google Scholar 

  14. Koch-Weser, J., Amer. J. Physiol., 204, 451 (1963).

    CAS  PubMed  Google Scholar 

  15. Fisher, V. J., Lee, R. J., Marlon, A. M., and Kaveler, F., Circulation Res., 20, 520 (1967).

    Article  CAS  Google Scholar 

  16. Spiro, D., and Sonnenblick, E. H., Circulation Res., 15, 14, Suppl. 2 (1964).

    CAS  Google Scholar 

  17. Hoffman, B. F., Bartlestone, H. J., Scherlag, B. J., and Cranefield, P. F., Bull. NY Acad. Med., 41, 498 (1965).

    CAS  Google Scholar 

  18. Sonnenblick, E. H., Frommer, P. L., and Braunwald, E., Bull. NY Acad. Med., 41, 554 (1965).

    CAS  Google Scholar 

  19. Fisher, V. J., Lee, R. J., Marlon, A. M., and Kaveler, F., Circulation Res., 20, 520 (1967).

    Article  CAS  Google Scholar 

  20. Sonnenblick, E. H., Spiro, D., and Cottrell, T., Proc. US Nat. Acad. Sci., 40, 1931 (1963).

    Google Scholar 

  21. Bärany, M., Bärany, K., Reckard, T., and Volpe, A., Arch. Biochem. Biophys., 109, 185 (1965).

    Article  Google Scholar 

  22. Katz, A. M., Repke, D. I., and Rubin, B. B., Circulation Res., 19, 611 (1966).

    Article  CAS  Google Scholar 

  23. Chandler, B. M., Sonnenblick, E. H., and Pool, P. E., Circulation Res., 21, 717 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SONNENBLICK, E., PARMLEY, W., BUCCINO, R. et al. Maximum Force Development in Cardiac Muscle. Nature 219, 1056–1058 (1968). https://doi.org/10.1038/2191056a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2191056a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing