Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthetic Analogues of Polynucleotides

Abstract

ANALOGUES of purines and pyrimidines have been used as antimetabolites1. Some of these have been converted into their nucleosides or nucleotides which also act as antimetabolites2. Analogues of nucleosides in which D-ribose or 2-deoxy-D-ribose is replaced by another carbohydrate or carbohydrate analogue have also been extensively studied2. Some of the nucleotide analogues have been converted into polynucleotide analogues by the use of suitable enzymes3–6 and by taking advantage of the fact that certain micro-organisms will incorporate the nucleotide analogue into DNA or RNA (refs. 7–13). The synthesis of polynucleotide analogues in which the purine or pyrimidine side chains are linked by a type of backbone different from the sugar phosphate backbone of the natural polynucleotides has been reported in previous work from this laboratory. One type was obtained by copolymerizing 5′-O-acrylyluridine with acrylamide14 and another by reacting adenosine dialdehyde with polyacrylic acid hydrazide15. Both these polymers contained a fraction which hybridized with denatured DNA trapped in agar and with denatured DNA in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bendich, A., Nucleic Acids (edit. by Chargaff, E., and Davidson, J. N.), 1, 101 (Academic Press, 1955).

    Google Scholar 

  2. Michelson, A. M., The Chemistry of Nucleosides and Nucleotides, 54 (Academic Press, 1963).

    Google Scholar 

  3. Shapiro, L., and August, J. T., J. Mol. Biol., 14, 214 (1965).

    Article  CAS  Google Scholar 

  4. Wahba, A. J., Gardner, R. S., Basilio, C., Miller, R. S., Speyer, J., and Lengyel, P., Proc. US Nat. Acad. Sci., 49, 116 (1963).

    Article  ADS  CAS  Google Scholar 

  5. Michelson, A. M., and Pochon, F., Biochim. Biophys. Acta, 114, 469 (1966).

    Article  CAS  Google Scholar 

  6. Pochon, F., and Michelseon, A. M., Biochim. Biophys. Acta, 145, 321 (1967).

    Article  CAS  Google Scholar 

  7. Dunn, D. B., and Smith, J. D., Nature, 174, 305 (1954); Biochem. J., 67, 494 (1957).

    Article  ADS  CAS  Google Scholar 

  8. Prusoff, W. H., J. Biol. Chem., 226, 901 (1957).

    CAS  PubMed  Google Scholar 

  9. Smith, J. D., and Matthews, R. E. F., Biochem. J., 66, 323 (1957).

    Article  CAS  Google Scholar 

  10. Mandel, H. G., Markham, R., and Matthews, R. E. F., Biochim. Biophys. Acta, 24, 205 (1957).

    Article  CAS  Google Scholar 

  11. Mandel, H. G., and Markham, R., Biochem. J., 69, 297 (1958).

    Article  CAS  Google Scholar 

  12. Gordon, M. P., and Staehelin, M., J. Amer. Chem. Soc., 80, 2340 (1958).

    Article  CAS  Google Scholar 

  13. Zamenhof, S., Rich, K., and Giovanni, R. de, J. Biol Chem., 234, 2960 (1959).

    CAS  PubMed  Google Scholar 

  14. Cassidy, F., and Jones, A. S., Europ. Polymer. J., 2, 319 (1966).

    Article  CAS  Google Scholar 

  15. Jones, A. S., and Taylor, N., Nature, 215, 505 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Eckstein, F., J. Amer. Chem. Soc., 88, 4292 (1966); Tetrahedron Lett., 1157 (1957).

    Article  CAS  Google Scholar 

  17. Franklin, R. F., and Gosling, R. G., Nature, 171, 740 (1953); Watson, J. D., and Crick, F. H. C., ibid., 171, 964 (1953).

    Article  ADS  CAS  Google Scholar 

  18. Gilham, P. T., and Khorana, H. G., J. Amer. Chem. Soc., 80, 6212 (1958).

    Article  CAS  Google Scholar 

  19. Felsenfeld, G., and Rich, A., Biochim. Biophys. Acta, 26, 457 (1957).

    Article  CAS  Google Scholar 

  20. Michelson, A. M., Biochim. Biophys. Acta, 55, 841 (1962).

    Article  CAS  Google Scholar 

  21. Naylor, R., and Gilham, P. T., Biochemistry, 5, 2722 (1966); Rich, A., and Tinoco, I., J. Amer. Chem. Soc., 82, 6409 (1960).

    Article  CAS  Google Scholar 

  22. Warner, R. C., J. Biol. Chem., 229, 711 (1957).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HALFORD, M., JONES, A. Synthetic Analogues of Polynucleotides. Nature 217, 638–640 (1968). https://doi.org/10.1038/217638a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/217638a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing