Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 7 Issue 1, January 2024

Reconstructing copper

In their work, Raffaella Buonsanti and colleagues investigate the mechanism of reconstruction of copper CO2 reduction electrocatalysts. Spectroscopic methods support a dissolution-redeposition mechanism involving solution-based Cu(I) species which are further elucidated as copper carbonyl and oxalate complexes using density functional theory.

See Vavra et al.

Cover design: Alex Whitworth.

Research Highlights

Top of page ⤴

News & Views

  • Traditional catalyst synthesis primarily hinges on liquid-phase methods. Nevertheless, a quarter of a century ago, the advent of vapour-phase methods such as atomic layer deposition opened up important alternatives to atomically tailor catalysts and boost their performance.

    • Matthias Filez
    • Jolien Dendooven
    • Christophe Detavernier
    News & Views
  • The ab initio atomistic thermodynamics approach, coined by Reuter and Scheffler formally in 2001, remains pivotal for understanding and predicting the stable surfaces of thermal catalysts under technical conditions.

    • Taehun Lee
    • Aloysius Soon
    News & Views
  • Chiral BINOL-phosphates have qualified as privileged Brønsted acid organocatalysts, providing solutions to many challenging enantioselective transformations for a wide range of substrates under mild reaction conditions. Here we revisit the story of their origins.

    • Svetlana B. Tsogoeva
    News & Views
  • Electrocatalysis would not be the same without the rotating disk electrode. Its invention in the mid-twentieth century enabled immense developments, which rendered it a classic technique in electrochemistry. The rotating disk electrode will remain a cornerstone of electrocatalysis with further advances that bridge the gap with real systems.

    • Serhiy Cherevko
    • Ioannis Katsounaros
    News & Views
Top of page ⤴

Research

Top of page ⤴

Search

Quick links