Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry

Abstract

The tic disorder Tourette's Syndrome (TS) and obsessive-compulsive disorder (OCD) are comorbid behavioral disorders, suggesting a shared but still unknown neuronal basis. To ‘circuit-test’ such behaviors, we previously engineered transgenic mice expressing a neuropotentiating protein (cholera toxin A1 subunit) within a cortical-limbic subset of dopamine D1-receptor expressing (D1+) neurons known to trigger glutamatergic excitation of orbitofrontal, sensorimotor, limbic and efferent striatal circuits thought to be hyperactive or affected in OCD and TS. These mice exhibited OCD-like behaviors including generalized behavioral perseveration and compulsion-like leaping and grooming-associated pulling and biting of skin and hair. We now report that these OCD-like mice, like humans, also exhibit comorbid TS-like behaviors, including juvenile-onset tics; increased tic number, complexity and flurries; increased tic severity in males; voluntary tic suppression; and tic responsiveness to a non-cataleptic TS+OCD drug therapy (clonidine, 0.01 mg kg−1). These data suggest that hormonal gender differences, apart from the influence of genetic or autoimmune etiologic factors, may be sufficient to aggravate tic severity in human TS males compared to TS females. These data also proffer a precise neuronal basis for TS+OCD, wherein tics and primary compulsions or obsessions are evoked by hyperactivity of various cortical-limbic projection neurons’ glutamatergic output to efferent targets like the striatum. The ‘Cortical-limbic Glutamatergic Neuron’ (CGN) neuronal circuit model merges formerly opposed neurotransmitter models of TS and OCD, and is consistent with new clinical reports of increased cortical hyperactivity, striatal glutamate and striatal inhibitory D2 receptors, and reduced striatal responsiveness, in these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pauls DL, Leckman JF . The inheritance of Gilles de la Tourette's syndrome and associated behaviors. Evidence for autosomal dominant transmission N Engl J Med 1986 315: 993–997

    Article  CAS  Google Scholar 

  2. Singer HS, Walkup JT . Tourette syndrome and other tic disorders. Diagnosis, pathophysiology, and treatment Medicine (Baltimore) 1991 70: 15–32

    Article  CAS  Google Scholar 

  3. Garvey MA, Giedd J, Swedo SE . PANDAS: the search for environmental triggers of pediatric neuropsychiatric disorders. Lessons from rheumatic fever J Child Neurol 1998 13: 413–923

    Article  CAS  Google Scholar 

  4. Leonard HL, Lenane MC, Swedo SE, Rettew DC, Gershon ES, Rapoport JL . Tics and Tourette's disorder: a 2- to 7-year follow-up of 54 obsessive-compulsive children Am J Psychiatry 1992 149: 1244–1251

    Article  CAS  Google Scholar 

  5. Frankel M, Cummings JL, Robertson MM, Trimble MR, Hill MA, Benson DF . Obsessions and compulsions in Gilles de la Tourette's syndrome Neurology 1986 36: 378–382

    Article  CAS  Google Scholar 

  6. Van Ameringen M, Mancini C, Oakman JM, Farvolden P . The potential role of haloperidol in the treatment of trichotillomania J Affect Disord 1999 56: 219–226

    Article  CAS  Google Scholar 

  7. The Tourette Syndrome Classification Study Group. Definitions and classification of tic disorders Arch Neurol 1993 50: 1013–1016

  8. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th edn American Psychiatric Press: Washington, DC 1994 p xxvii 78–105 886

  9. Sheppard DM, Bradshaw JL, Purcell R, Pantelis C . Tourette's and comorbid syndromes: obsessive compulsive and attention deficit hyperactivity disorder A common etiology? Clin Psychol Rev 1999 19: 531–552

    Article  CAS  Google Scholar 

  10. Kurlan R, Kersun J, Ballantine HT Jr, Caine ED . Neurosurgical treatment of severe obsessive-compulsive disorder associated with Tourette's syndrome Mov Disord 1990 5: 152–155

    Article  CAS  Google Scholar 

  11. Swedo SE, Pietrini P, Leonard HL, Schapiro MB, Rettew DC, Goldberger EL et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy Arch Gen Psychiatry 1992 49: 690–694

    Article  CAS  Google Scholar 

  12. Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN et al. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder Arch Gen Psychiatry 1996 53: 595–606

    Article  CAS  Google Scholar 

  13. Greenberg BD, Ziemann U, Cora-Locatelli G, Harmon A, Murphy DL, Keel JC et al. Altered cortical excitability in obsessive-compulsive disorder Neurology 2000 54: 142–147

    Article  CAS  Google Scholar 

  14. Ziemann U, Paulus W, Rothenberger A . Decreased motor inhibition in Tourette's disorder: evidence from transcranial magnetic stimulation Am J Psychiatry 1997 154: 1277–1284

    Article  CAS  Google Scholar 

  15. Rosenberg DR, MacMaster FP, Keshavan MS, Fitzgerald KD, Stewart CM, Moore GJ . Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine J Am Acad Child Adolesc Psychiatry 2000 39: 1096–1103

    Article  CAS  Google Scholar 

  16. Sheldon PW, Aghajanian GK . Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons Synapse 1991 9: 208–218

    Article  CAS  Google Scholar 

  17. Jakab RL, Goldman-Rakic PS . 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites Proc Natl Acad Sci USA 1998 95: 735–740

    Article  CAS  Google Scholar 

  18. Aghajanian GK, Marek GJ . Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release Brain Res 1999 825: 161–171

    Article  CAS  Google Scholar 

  19. Cohen DJ, Riddle MA, Leckman JF . Pharmacotherapy of Tourette's syndrome and associated disorders Psychiatr Clin North Am 1992 15: 109–129

    Article  CAS  Google Scholar 

  20. Campbell KM, de Lecea L, Severynse DM, Caron MG, McGrath MJ, Sparber SB et al. OCD-Like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons J Neurosci 1999 19: 5044–5053

    Article  CAS  Google Scholar 

  21. Burton FH, Hasel KW, Bloom FE, Sutcliffe JG . Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene Nature 1991 350: 74–77

    Article  CAS  Google Scholar 

  22. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L . Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain J Comp Neurol 1995 351: 357–373

    Article  CAS  Google Scholar 

  23. Campbell KM, McGrath MJ, Burton FH . Behavioral effects of cocaine on a transgenic mouse model of cortical-limbic compulsion Brain Res 1999 833: 216–224

    Article  CAS  Google Scholar 

  24. McGrath MJ, Campbell KM, Veldman MB, Burton FH . Anxiety in a transgenic mouse model of cortical-limbic neuropotentiated compulsive behavior Behav Pharmacol 1999 10: 435–443

    Article  CAS  Google Scholar 

  25. McGrath MJ, Campbell KM, Burton FH . The role of cognitive and affective processing in a transgenic mouse model of cortical-limbic neuropotentiated compulsive behavior Behav Neurosci 1999 113: 1249–1256

    Article  CAS  Google Scholar 

  26. Alexander GE, DeLong MR, Strick PL . Parallel organization of functionally segregated circuits linking basal ganglia and cortex Annu Rev Neurosci 1986 9: 357–381

    Article  CAS  Google Scholar 

  27. Cohen DJ, Shaywitz BA, Caparulo B, Young JG, Bowers MB Jr . Chronic, multiple tics of Gilles de la Tourette's disease. CSF acid monoamine metabolites after probenecid administration Arch Gen Psychiatry 1978 35: 245–250

    Article  CAS  Google Scholar 

  28. Hollander E, Fay M, Cohen B, Campeas R, Gorman JM, Liebowitz MR . Serotonergic and noradrenergic sensitivity in obsessive-compulsive disorder: behavioral findings Am J Psychiatry 1988 145: 1015–1017

    Article  CAS  Google Scholar 

  29. Wolf SS, Jones DW, Knable MB, Gorey JG, Lee KS, Hyde TM et al. Tourette syndrome: prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding Science 1996 273: 1225–1227

    Article  CAS  Google Scholar 

  30. Peterson BS, Skudlarski P, Anderson AW, Zhang H, Gatenby JC, Lacadie CM et al. A functional magnetic resonance imaging study of tic suppression in Tourette syndrome Arch Gen Psychiatry 1998 55: 326–333

    Article  CAS  Google Scholar 

  31. Matsumoto K, Mizowaki M, Thongpraditchote S, Murakami Y, Watanabe H . alpha2-Adrenoceptor antagonists reverse the 5-HT2 receptor antagonist suppression of head-twitch behavior in mice Pharmacol Biochem Behav 1997 56: 417–422

    Article  CAS  Google Scholar 

  32. Campbell KM, McGrath MJ, Burton FH . Differential response of cortical-limbic neuropotentiated compulsive mice to dopamine D1 and D2 receptor antagonists Eur J Pharmacol 1999 371: 103–111

    Article  CAS  Google Scholar 

  33. Cohen DJ, Leckman JF, Pauls D . Neuropsychiatric disorders of childhood: Tourette's syndrome as a model Acta Paediatr Suppl 1997 422: 106–111

    Article  CAS  Google Scholar 

  34. Swedo SE, Leonard HL, Mittleman BB, Allen AJ, Rapoport JL, Dow SP et al. Identification of children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections by a marker associated with rheumatic fever Am J Psychiatry 1997 154: 110–112

    Article  CAS  Google Scholar 

  35. Peterson BS, Leckman JF, Scahill L, Naftolin F, Keefe D, Charest NJ et al. Steroid hormones and CNS sexual dimorphisms modulate symptom expression in Tourette's syndrome Psychoneuroendocrinology 1992 17: 553–563

    Article  Google Scholar 

  36. Lichter DG, Jackson LA . Predictors of clonidine response in Tourette syndrome: implications and inferences J Child Neurol 1996 11: 93–97

    Article  CAS  Google Scholar 

  37. Campbell KM, Veldman MB, McGrath MJ, Burton FH . TS+OCD-like neuropotentiated mice are supersensitive to seizure induction NeuroReport 2000 11: 2335–2338

    Article  CAS  Google Scholar 

  38. McGrath MJ, Parks CRI, Burton FH . Glutamatergic drugs exacerbate symptomatic behavior in a transgenic model of comorbid Tourette's Syndrome and obsessive-compulsive disorder Brain Res 2000 877: 23–30

    Article  CAS  Google Scholar 

  39. Edgley SA, Lemon RN . Experiments using transcranial magnetic brain stimulation in man could reveal important new mechanisms in motor control J Physiol (Lond) 1999 521: 565

    Article  CAS  Google Scholar 

  40. Robertson MM, Schnieden V, Lees AJ . Management of Gilles de la Tourette syndrome using sulpiride Clin Neuropharmacol 1990 13: 229–235

    Article  CAS  Google Scholar 

  41. Ceccherini-Nelli A, Guazzelli M . Treatment of refractory OCD with the dopamine agonist bromocriptine J Clin Psychiatry 1994 55: 415–416

    CAS  PubMed  Google Scholar 

  42. Gilbert DL, Sethuraman G, Sine L, Peters S, Sallee FR . Tourette's syndrome improvement with pergolide in a randomized, double-blind, crossover trial Neurology 2000 54: 1310–1315

    Article  CAS  Google Scholar 

  43. Bonnier C, Nassogne MC, Evrard P . Ketanserin treatment of Tourette's syndrome in children Am J Psychiatry 1999 156: 1122–1123

    CAS  PubMed  Google Scholar 

  44. Cromwell HC, Berridge KC, Drago J, Levine MS . Action sequencing is impaired in D1A-deficient mutant mice Eur J Neurosci 1998 10: 2426–2432

    Article  CAS  Google Scholar 

  45. Castellanos FX, Giedd JN, Elia J, Marsh WL, Ritchie GF, Hamburger SD et al. Controlled stimulant treatment of ADHD and comorbid Tourette's syndrome: effects of stimulant and dose J Am Acad Child Adolesc Psychiatry 1997 36: 589–596

    Article  CAS  Google Scholar 

  46. Kratochvil CJ, Bohac D, Harrington M, Baker N, May D, Burke WJ . An open-label trial of tomoxetine in pediatric attention deficit hyperactivity disorder J Child Adolesc Psychopharmacol 2001 11: 167–170

    Article  CAS  Google Scholar 

  47. Michelson D, Faries D, Wernicke J, Kelsey D, Kendrick K, Sallee FR et al. Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study Pediatrics 2001 108: E83

    Article  CAS  Google Scholar 

  48. Carlsson ML . On the role of cortical glutamate in obsessive-compulsive disorder and attention-deficit hyperactivity disorder, two phenomenologically antithetical conditions Acta Psychiatr Scand 2000 102: 401–413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the TSA and NARSAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F H Burton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordstrom, E., Burton, F. A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry. Mol Psychiatry 7, 617–625 (2002). https://doi.org/10.1038/sj.mp.4001144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001144

Keywords

This article is cited by

Search

Quick links