Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

LIS1—no more no less

Abstract

LIS1 is one of the genes that has a principle role in brain development since hemizygote mutations in LIS1 result in a severe brain malformation known as lissencephaly (‘smooth brain’). LIS1 is a WD repeat protein and is known to be involved in several protein complexes that are likely to play a functional role in brain development. We discuss here the brain developmental phenotype observed in mice heterozygote for an N-terminal truncated LIS1 protein in view of known LIS1 protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Cahana A et al. Proc Natl Acad Sci USA 2001 98: 6429–6434

  2. des Portes V et al. Cell 1998 92: 51–61

    Article  Google Scholar 

  3. Gleeson JG et al. Cell 1998 92: 63–72

    Article  CAS  Google Scholar 

  4. Reiner O et al. Nature 1993 364: 717–721

    Article  CAS  Google Scholar 

  5. Dobyns WB et al. J Am Med Ass 1993 270: 2838–2842

  6. Lo Nigro CL et al. Hum Mol Genet 1997 6: 157–164

  7. Pilz DT et al. Hum Mol Genet 1998 7: 2029–2037

  8. Fogli A et al. Ann Neurol 1999 45: 154–161

  9. Neer EJ et al. Nature 1994 371: 297–300

    Article  CAS  Google Scholar 

  10. Reiner O . Neuron 2000 28: 633–636

    Article  CAS  Google Scholar 

  11. Morris NR et al. Trends Cell Biol 1998 8: 467–470

  12. Xiang X et al. Mol Biol Cell 1995 6: 297–310

  13. Morris SM et al. Curr Biol 1998 8: 603–606

  14. Willins DA et al. Genetics 1995 141: 1287–1298

  15. Sapir T et al. EMBO J 1997 16: 6977–6984

  16. Sapir T et al. Eur J Biochem 1999 265: 181–188

    Article  CAS  Google Scholar 

  17. Beckwith SM et al. J Cell Biol 1998 143: 1239–1247

    Article  Google Scholar 

  18. Xiang X et al. Proc Natl Acad Sci USA 1994 91: 2100–2104

  19. Xiang X et al. Curr Biol 2000 10: 603–606

  20. Han G et al. Curr Biol 2001 11: 1–20

  21. Liu Z et al. Development 1999 126: 4477–4488

  22. Swan A et al. Nat Cell Biol 1999 1: 444–449

    Article  CAS  Google Scholar 

  23. Lei Y, Warrior R . Dev Biol 2000 226: 57–72

  24. Fujiwara T et al. Mol Cell Biol 1999 19: 8016–8027

  25. Sasaki S et al. Neuron 2000 28: 681–696

    Article  CAS  Google Scholar 

  26. Faulkner NE et al. Nat Cell Biol 2000 2: 784–791

    Article  CAS  Google Scholar 

  27. Smith DS et al. Nat Cell Biol 2000 2: 767–775

    Article  CAS  Google Scholar 

  28. Sharp DJ . Nature 2000 407: 41–47

    Article  CAS  Google Scholar 

  29. Goldstein LS, Yang Z . Annu Rev Neurosci 2000 23: 39–71

  30. Efimov VP, Morris NR . J Cell Biol 2000 150: 681–688

    Article  CAS  Google Scholar 

  31. Minke PF et al. Mol Microbiol 1999 32: 1065–1076

    Article  CAS  Google Scholar 

  32. Feng Y et al. Neuron 2000 28: 665–679

    Article  CAS  Google Scholar 

  33. Hayashi MA et al. Biochem Biophys Res Commun 2000 269: 7–13

  34. Niethammer M et al. Neuron 2000 28: 697–711

    Article  CAS  Google Scholar 

  35. Kitagawa M et al. FEBS Lett 2000 479: 57–62

  36. Kwon YT, Tsai LH . Results Probl Cell Differ 2000 30: 241–253

  37. Chae T et al. Neuron 1997 18: 29–42

    Article  CAS  Google Scholar 

  38. Gilmore EC et al. J Neurosci 1998 18: 6370–6377

  39. Kwon YT, Tsai LH . J Comp Neurol 1998 395: 510–522

  40. Ohshima T et al. Proc Natl Acad Sci USA 1996 93: 11173–11178

  41. Caspi M et al. Hum Mol Genet 2000 9: 2205–2213

  42. Horesh D et al. Hum Mol Genet 1999 8: 1599–1610

  43. Francis F et al. Neuron 1999 23: 247–256

    Article  CAS  Google Scholar 

  44. Gleeson JG et al. Neuron 1999 23: 257–271

    Article  CAS  Google Scholar 

  45. Sapir T et al. Hum Mol Genet 2000 5: 703–712

  46. Hattori M et al. Nature 1994 370: 216–218

    Article  CAS  Google Scholar 

  47. Manya H et al. J Biol Chem 1998 273: 18567–18572

  48. Sheffield P et al. Proteins 2000 39: 1–8

  49. Kornecki E, Ehrlich YH . Science 1988 240: 1792–1794

    Article  CAS  Google Scholar 

  50. Yue TL, Feuerstein GZ . Crit Rev Neurobiol 1994 8: 11–24

  51. Bazan NG . Prog Brain Res 1998 118: 281–291

  52. McNeil RS et al. Cell Motil Cytoskeleton 1999 43: 99–113

  53. Adachi T et al. Neurosci Lett 1997 235: 133–136

  54. Bix GJ, Clark GD . J Neurosci 1998 18: 307–318

  55. Gould SJ, Valle D . Trends Genet 2000 16: 340–345

  56. Powers JM . J Neuropathol Exp Neurol 1995 54: 710–719

  57. Baes M et al. Nat Genet 1997 17: 49–57

    Article  CAS  Google Scholar 

  58. Cahana A, Reiner O . FEBS Lett 1999 451: 99–102

  59. Hirotsune S et al. Nat Genet 1998 19: 333–339

    Article  CAS  Google Scholar 

  60. Liu Z et al. Nat Cell Biol 2000 2: 776–783

    Article  CAS  Google Scholar 

  61. Fleck MW et al. J Neurosci 2000 20: 2439–2450

  62. Sapir T et al. Eur J Biochem 1999 266: 1011–1020

  63. Ahn C, Morris NR . J Biol Chem 2001 276: 9903–9909

  64. Garcia-Higuera I et al. Biochemistry 1996 35: 13985–13994

    Article  CAS  Google Scholar 

  65. Ghosh A, Shatz CJ . Development 1993 117: 1031–1047

  66. Ghosh A et al. Nature 1990 347: 179–181

    Article  CAS  Google Scholar 

  67. Katz LC, Shatz CJ . Science 1996 274: 1133–1138

    Article  CAS  Google Scholar 

  68. Finney EM, Shatz CJ . J Neurosci 1998 18: 8826–8838

  69. Edwards MA et al. Neuroscience 1990 36: 121–144

    Article  CAS  Google Scholar 

  70. Super H et al. Brain Res Brain Res Rev 1998 27: 40–64

  71. Rakic P . Proc Natl Acad Sci USA 1995 92: 11323–11327

  72. Manya H et al. J Biol Chem 1999 274: 31827–31832

  73. Clark GD et al. Neuroreport 1995 6: 2569–2575

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in Part by Fritz Thyssen Stiftung Foundation, BSF grant No. 97–00014, HFSP grant No. RG283199 9, Volkswagen-Stiftung, the Israeli Science Foundation grant No. 19/00, and Minerva Foundation, to OR, and by DGSYC project PM 98–0056, Foundation Seneca of Murcia: project 00708-CV-99 and CE Contracts QLG2-CT-99–793, QLG3–00–01625 to SM. OR is an Incumbent of Aser Rothstein Career Development Chair in Genetic Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Reiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, O., Cahana, A., Escamez, T. et al. LIS1—no more no less. Mol Psychiatry 7, 12–16 (2002). https://doi.org/10.1038/sj.mp.4000975

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000975

This article is cited by

Search

Quick links